Neural Network and Backpropagation Questions

Daeyoung Kim, Xintian Han

CDS, NYU

April 21, 2021

Daeyoung Kim, Xintian Han (CDS, NYU)

DS-GA 1003 / CSCI-GA 2567

Question 1: Step Activation Function ¹

Suppose we have a neural network with one hidden layer.

$$f(x) = w_0 + \sum_i w_i h_i(x);$$
 $h_i(x) = g(b_i + v_i x),$

where activation function g is defined as

$$\mathbf{g}(z) = egin{cases} 1 & ext{if } z \geqslant 0 \ 0 & ext{if } z < 0 \end{cases}$$

Which of the following functions can be exactly represented by this neural network?

- polynomials of degree one: I(x) = ax + b
- hinge loss: I(x) = max(1-x,0)
- polynomials of degree two: $I(x) = ax^2 + bx + c$
- piecewise constant functions

¹From CMU

[Solution] Question 1: Step Activation Function

Suppose we have a neural network with one hidden layer.

$$f(x) = w_0 + \sum_i w_i h_i(x); \quad h_i(x) = g(b_i + v_i x),$$

where activation function g is defined as

$$\mathbf{g}(z) = egin{cases} 1 & ext{if } z \geqslant 0 \ 0 & ext{if } z < 0 \end{cases}$$

Which of the following functions can be exactly represented by this neural network?

- polynomials of degree one: I(x) = ax + b No If g can be identity function, then the answer is **Yes**
- hinge loss: I(x) = max(1-x,0) No
- polynomials of degree two: $I(x) = ax^2 + bx + c$ No
- piecewise constant functions Yes

 $(-c) \cdot g(x-b) + (c) \cdot g(x-a) \text{ can represent } l(x) = c, a \leqslant x < b.$

Daeyoung Kim, Xintian Han (CDS, NYU)

DS-GA 1003 / CSCI-GA 2567

Question 2: Power of ReLU²

Consider the following small NN:

 $w_2^{\top} \operatorname{ReLU}(W_1x+b_1)+b_2$

where the data is 2D, W_1 is 2 by 2, b_1 is 2D, w_2 is 2D and b_2 is 1D.

$$x_1 = (1,1) \ y_1 = 1; \ x_2 = (1,-1) \ y_2 = -1; \ x_3 = (-1,1) \ y_3 = -1; \ x_4 = (-1,-1) \ y_4 = 1$$

Find b_1 , b_2 , W_1 , w_2 to solve the problem. (Separate points from class y = 1 and y = -1.)

²From Harvard

[Solution] Question 2: Power of ReLU ³

$$W_1 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, b_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$w_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, b_2 = -1$$
DS-GA 1003 / CSCI-GA 2567

Daeyoung Kim, Xintian Han (CDS, NYU)

DS-GA 1005 / CSCI-GA 250

Question 3: Backpropagation ⁴

Suppose we have a one hidden layer network and computation is:

$$h = \mathsf{RELU}(Wx + b1)$$

$$\hat{y} = \mathsf{softmax}(Uh + b_2)$$

$$J = \mathsf{Cross\ entropy}(y, \hat{y}) = -\sum_i y_i \log \hat{y}_i$$

The dimensions of the matrices are:

$$W \in \mathbb{R}^{m imes n}$$
 $x \in \mathbb{R}^n$ $b_1 \in \mathbb{R}^m$ $U \in \mathbb{R}^{k imes m}$ $b_2 \in \mathbb{R}^k$

Use backpropagation to calculate these four gradients

$$\frac{\partial J}{\partial b_2} \quad \frac{\partial J}{\partial U} \quad \frac{\partial J}{\partial b_1} \quad \frac{\partial J}{\partial W}$$

⁴From Stanford

[Solution] Question 3: Backpropagation

$$z_{2} = Uh + b2 \quad \delta_{1} = \frac{\partial J}{\partial z_{2}} = \hat{y} - y$$
$$\frac{\partial J}{\partial b_{2}} = \delta_{1}$$
$$\frac{\partial J}{\partial U} = \delta_{1}h^{T}$$
$$\frac{\partial J}{\partial h} = U^{T}\delta_{1}$$
$$z_{1} = Wx + b_{1} \quad \delta_{2} = \frac{\partial J}{\partial z_{1}} = U^{T}\delta_{1} \circ 1\{h > 0\}$$
$$\frac{\partial J}{\partial b_{1}} = \delta_{2}$$
$$\frac{\partial J}{\partial W} = \delta_{2}x^{T}$$

Coding Exercise

• Computation graph hands-on

[Optional] Recurrent Neural Networks

Source: https://medium.com/deeplearningbrasilia/deep-learning-recurrent-neural-networks-f9482a24d010

[Optional]: Backpropagation in RNN

Suppose we have a recurrent neural network (RNN). The recursive function is:

$$egin{aligned} & m{z}_{t-1} = m{W}m{x}_{t-1} + m{U}m{h}_{t-1}, \ & m{h}_t = g(m{z}_{t-1}), \end{aligned}$$

where h_t is the hidden state and x_t is the input at time step t. W and U are the weighted matrix. g is an element-wise activation function. And h_0 is a given fixed initial hidden state.

- Assume loss function \mathcal{L} is a function of \boldsymbol{h}_T . Given $\partial \mathcal{L} / \partial \boldsymbol{h}_T$, calculate $\partial \mathcal{L} / \partial \boldsymbol{U}$ and $\partial \mathcal{L} / \partial \boldsymbol{W}$.
- Suppose g' is always greater than λ and the smallest singular value of U is larger than $1/\lambda$. What will happen to the gradient $\partial \mathcal{L}/\partial \boldsymbol{U}$ and $\partial \mathcal{L}/\partial \boldsymbol{W}$?
- Suppose g' is always smaller than λ and the largest singular value of U is smaller than $1/\lambda$. What will happen to the gradient $\partial \mathcal{L}/\partial \boldsymbol{U}$ and $\partial \mathcal{L}/\partial \boldsymbol{W}$?

[Solution] [Optional]: Backpropagation in RNN

۲

$$\frac{\partial \mathcal{L}}{\partial U} = \sum_{t=1}^{T} \left(\Pi_{k=t-1}^{T-1} (\boldsymbol{U}^{T} \boldsymbol{D}_{k}) \right) \frac{\partial \mathcal{L}}{\partial \boldsymbol{h}_{T}} \boldsymbol{h}_{t-1}^{T}$$
$$\frac{\partial \mathcal{L}}{\partial W} = \sum_{t=1}^{T} \left(\Pi_{k=t-1}^{T-1} (\boldsymbol{U}^{T} \boldsymbol{D}_{k}) \right) \frac{\partial \mathcal{L}}{\partial \boldsymbol{h}_{T}} \boldsymbol{x}_{t-1}^{T}$$

 $D_k = \text{diag}(g'(z_k))$ is the Jacobian matrix of the element-wise activation function.

- The smallest singular value of the $U^T D_{k-1}$ will be greater than one. So the smallest singular value of the gradient $\frac{\partial h_s}{\partial h_t}$ will be larger than a^{s-t} for some a > 1. So the gradient is going to be exponentially large. This is called exploding gradient.
- The largest singular value of the $\boldsymbol{U}^T D_{k-1}$ will be smaller than one. So the largest singular value of the gradient $\frac{\partial h_s}{\partial h_t}$ will be smaller than a^{s-t} for some a < 1. So the gradient is going to be exponentially small. This is called vanishing gradient.

Daeyoung Kim, Xintian Han (CDS, NYU)

DS-GA 1003 / CSCI-GA 2567