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Intro Question

Question

Suppose 10 different meteorologists have produced functions
f1, . . . , f10 : Rd → R that forecast tomorrow’s noon-time temperature
using the same d features. Given a dataset containing 1000 data points
(xi , yi ) ∈ Rd × R of similar forecast situations, describe a method to
forecast tomorrow’s noon-time temperature. Would you use boosting,
bagging or neither?
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Intro Solution

Solution

Let x̂i = (xi , f1(xi ), . . . , f10(xi )) ∈ Rd+10. Then use any fitting method you
like to produce an aggregate decision function f : Rd+10 → R. This
method is sometimes called stacking.

1 This isn’t bagging - we didn’t generate bootstrap samples and learn a
decision function on each of them.

2 This isn’t boosting - boosting learns decision functions on varying
datasets to produce an aggregate classifier.
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Additive Models

1 Additive models over a base hypothesis space H take the form

F =

{
f (x) =

M∑
m=1

νmhm(x) | hm ∈ H, νm ∈ R

}
.

2 Since we are taking linear combinations, we assume the hm functions
take values in R or some other vector space.

3 Empirical risk minimization over F tries to find

arg min
f ∈F

1

n

n∑
i=1

`(yi , f (xi )).

4 This in general is a difficult task, as the number of base hypotheses
M is unknown, and each base hypothesis hm ranges over all of H.
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Forward Stagewise Additive Modeling (FSAM)

The FSAM method fits additive models using the following (greedy)
algorithmic structure:

1 Initialize f0 ≡ 0.
2 For stage m = 1, . . . ,M:

1 Choose hm ∈ H and νm ∈ R so that

fm = fm−1 + νmhm

has the minimum empirical risk.
2 The function fm has the form

fm = ν1h1 + · · ·+ νmhm.

When choosing hm, νm during stage m, we must solve the
minimization

(νm, hm) = arg min
ν∈R,h∈H

n∑
i=1

`(yi , fm−1(xi ) + νh(xi )).
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Gradient Boosting

1 Can we simplify the following minimization problem:

(νm, hm) = arg min
ν∈R,h∈H

n∑
i=1

`(yi , fm−1(xi ) + νh(xi )).

2 What if we linearize the problem and take a step along the steepest
descent direction?

3 Good idea, but how do we handle the constraint that h is a function
that lies in H, the base hypothesis space?

4 First idea: since we are doing empirical risk minimization, we only
care about the values h takes on the training set. Thus we can think
of h as a vector (h(x1), . . . , h(xn)).

5 Second idea: first compute unconstrained steepest descent direction,
and then constrain (project) onto possible choices from H.
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Gradient Boosting Machine

1 Initialize f0 ≡ 0.
2 For stage m = 1, . . . ,M:

1 Compute the steepest descent direction (also called pseudoresiduals):

rm = −
(

∂

∂fm−1(x1)
`(y1, fm−1(x1)), . . . ,

∂

∂fm−1(xn)
`(yn, fm−1(xn))

)
.

2 Find the closest base hypothesis (using Euclidean distance):

hm = arg min
h∈H

n∑
i=1

((rm)i − h(xi ))2.

3 Choose fixed step size νm ∈ (0, 1] or line search:

νm = arg min
ν≥0

n∑
i=1

`(yi , fm−1(xi ) + νhm(xi )).

4 Take the step:
fm(x) = fm−1(x) + νmhm(x).
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Gradient Boosting Machine

1 Each stage we need to solve the following step:

hm = arg min
h∈H

n∑
i=1

((rm)i − h(xi ))2.

How do we do this?

2 This is a standard least squares regression task on the “mock” dataset

D(m) = {(x1, (rm)1), . . . , (xn, (rm)n)}.

3 We assume that we have a learner that (approximately) solves least
squares regression over H.
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Gradient Boosting Comments

1 The algorithm above is sometimes called AnyBoost or Functional
Gradient Descent.

2 The most commonly used base hypothesis space is small regression
trees (HTF recommends between 4 and 8 leaves).
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Practice With Different Loss Functions

Question

Explain how to perform gradient boosting with the following loss
functions:

1 Square loss: `(y , a) = (y − a)2/2.

2 Absolute loss: `(y , a) = |y − a|.
3 Exponential margin loss: `(y , a) = e−ya.

D. Kim, S. Mohan, B. Bernstein (NYU) Gradient Boosting 14 Apr 2021 10 / 29



Solution: Square loss

Using `(y , a) = (y − a)2/2
To compute an arbitrary pseudoresidual we first note that

∂a(y − a)2/2 = −(y − a)

giving
−∂2`(yi , fm−1(xi )) = (yi − fm−1(xi )).

In words, for the square loss, the pseudoresiduals are simply the residuals
from the previous stage’s fit. Thus, in stage m our step direction hm is
given by solving

hm := arg min
h∈H

n∑
i=1

((yi − fm−1(xi ))− h(xi ))2.
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Solution: Absolute Loss

Using `(y , a) = |y − a|
Note that

∂a|y − a| = − sgn(y − a)

giving
−∂2`(yi , fm−1(xi )) = sgn(yi − fm−1(xi )).

The absolute loss only cares about the sign of the residual from the
previous stage’s fit. Thus, in stage m our step direction hm is given by
solving

hm := arg min
h∈H

n∑
i=1

(sgn(yi − fm−1(xi ))− h(xi ))2.
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Solution: Exponential Loss

Using `(y , a) = e−ya

Note that
∂ae
−ya = −ye−ya

giving
−∂2`(yi , fm−1(xi )) = yie

−yi fm−1(xi ).

Thus, in stage m our step direction hm is given by solving

hm := arg min
h∈H

n∑
i=1

(yie
−yi fm−1(xi ) − h(xi ))2.
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Exponential Loss and Adaboost

As an aside, we will now sketch an argument that shows that if we have
learners in the sense of AdaBoost (i.e., they produce classification
functions that minimize a weighted 0− 1 loss), we can use them with
GBM and the exponential loss to recover the AdaBoost algorithm. Let

~r =
(
yie
−yi fm−1(xi )

)n
i=1

and ~h = (h(xi ))ni=1.

Then we have

hm = arg min
h∈H

‖~r − ~h‖22 = ‖~r‖22 + ‖~h‖22 − 2〈~r , ~h〉.

Note that ~h ∈ {−1, 1}n so ‖~h‖22 = n, i.e., a constant. Thus this
minimization is equivalent to

arg max
h∈H

〈~r , ~h〉.
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Exponential Loss and Adaboost continued

Plugging in, we have

hm = arg max
h∈H

n∑
i=1

h(xi )yie
−yi fm−1(xi ).

Note that
h(xi )yi = 1− 2 · 1(h(xi ) 6= yi )

so

hm = arg max
h∈H

n∑
i=1

e−yi fm−1(xi ) − 2
n∑

i=1

e−yi fm−1(xi ) 1(h(xi ) 6= yi )

= arg min
h∈H

n∑
i=1

e−yi fm−1(xi ) 1(h(xi ) 6= yi ).

Thus we see that hm minimizes a weighted 0− 1 loss. The weights are

e−yi fm−1(xi ) = e−yi (
∑m−1

i=1 νihi (xi )) =
m−1∏
i=1

e−yiνihi (xi ) =
m−1∏
i=1

e−νi (1−2 1(hi (xi )6=yi )).

By solving for the optimal step size νm it can be shown (we omit this) that
the resulting function fm is the same as produced by AdaBoost.
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Coding Part

Next we apply GBM to square loss and absolute loss on a simple 1-d
data set.

We use decision stumps as our base hypothesis space.

Run gbm.py to see the output.
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Conditional Probability Models: Poisson Distribution 1

Suppose we are trying to predict a distribution of counts from some input
covariates. The simplest distribution in this situation is the Poisson
distribution

p(k ;λ) =
e−λλk

k!

on k = 0, 1, 2, 3, · · · and λ ∈ (0,∞). Per usual, the set up for this problem
involves:

Input: x ∈ Rd

Output: y ∈ {0, 1, 2, · · · }
Data: D = ((x1, y1), · · · , (xn, y2)) ∈

(
Rd × {0, 1, 2, · · · }

)n
, assumed

to be sampled i.i.d. from some distribution PX×Y .

1From David’s note
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Setup Continued

Recall our setup for learning conditional probability distributions involved
two functions:

x 7→ s = f (x)︸ ︷︷ ︸
score s∈R

7→ ψ(x)︸︷︷︸
ψ(x)∈ Action space

where we called ψ(s) our “transfer function”.

1 Give the action space for this problem.

2 Give a transfer function for the Poisson distribution. We would like it
to be differentiable.
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Setup Continued Solutions

1 λ ∈ (0,∞), where λ is the parameter of a Poisson distribution.

2 ψ(s) = exp(s)
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Linear Conditional Probability Model

1 Give the form of f (x) for a linear conditional probability model – call
the weight vector w (as we will use this convention for the rest of the
problem)

2 Give the likelihood p(y = yi |xi ;w) for a particular example (xi , yi )

3 Give the log likelihood for a particular example.

4 Give the full data log likelihood.
5 To fit this model, we need to find w∗ by maximizing the

log-likelihood, or equivalently minimizing the negative log-likelihood.
Show how you could solve this optimization problem using a gradient
based method by:

Stating your objective function J(w).
Finding the gradient ∇wJ
Giving the update rule wt+1 ← wt , including specifying a reasonable
approach to step size selection.
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Solution: LCPM

1 f (x) = wT x

2

p(y = yi |xi ;w) =
e−ψ(f (xi ))ψ(f (xi ))yi

yi !

=
e− exp(wT xi ) exp(wT xi )

yi

yi !

3

log(p(y = yi |xi ;w)) = log

(
e− exp(wT xi ) exp(wT xi )

yi

yi !

)
= − exp(wT xi ) + yiw

T xi − log(yi !)
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Solution LCPM continued

4.

log LD(w) = log p(D;w)

= log
n∏

i=1

p(y = yi |xi ;w)

=
n∑

i=1

log(p(y = yi |xi ;w))

=
n∑

i=1

[
− exp(wT xi ) + yiw

T xi − log(yi !)
]
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Solution LCPM continued

5. We’ll use full batch gradient descent on the NLL, with a fixed step size
η found via grid search. The objective after dropping the constant log(yi !)
is:

J(w) = − log LD(w) =
n∑

i=1

[
exp(wT xi )− yiw

T xi

]
The gradient is

∇wJ =
n∑

i=1

[
xi exp(wT xi )− yixi

]
The update rule is

wt+1 = wt − η∇wJ
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Nonlinear Conditional Probability Model

In this section, we’ll replace the linear score function s = fw (x) with a
nonlinear function s = f (x). We will use the same transfer function as in
the linear case.

1 Rewrite the full data log likelihood log LD(f ) using f instead of the
linear score function used above.

2 We’ll use gradient boosting to learn f . To use gradient boosting, we’ll
need the negative gradient −g of log LD(f ) with respect to
(f (x1), · · · , f (xn)). Find this negative gradient

3 Now fix some base hypothesis space H of function h : Rd → R. Give
the objective we solve to find h ∈ H that best fits −g

4 Now let’s put it all together. Assume we are using M rounds of
boosting. Let f (t) be he score function after t rounds of boosting,
h(t) be the function from the base hypothesis space learned in the
t’th round of boosting, and g(t) be the functional gradient in the t’th
round of boosting. Give psuedocode for gradient boosting given this
setup. Be sure to address step size selection.
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Solution: NCPM

1 log LD(f ) =
∑n

i=1 [− exp(f (xi )) + yi f (xi )− log(yi !)]

2 Note for all i

∂

∂f (xi )
[log LD(f )] =

∂

∂f (xi )
[− exp(f (xi )) + yi f (xi )− log(yi !)]

= − exp(f (xi )) + yi

Thus the negative gradient
−g = (−y1 + exp(f (x1)), · · · ,−yn + exp(f (xn))).

3

arg min
h∈H

n∑
i=1

(−gi − h(xi ))2 = arg min
h∈H

n∑
i=1

([−yi + exp(f (xi ))]− h(xi ))2
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Solution NCPM continued

4.

1 Initialize f (0) = 0.
2 For t from 1 to M:

1 Find −g(t)

2 Find h(t) (finding an (approximate) solution to the objective given in
the previous problem).

3 Add ηh(t) to f (t−1) for some (grid searched and probably small η),
yielding f (t) = ηh(t) + f (t−1)
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More Questions 2

Just in case we have time left. :-)

1 Show the exponential margin loss is a convex upper bound for the
0− 1 loss.

2 Show how to perform gradient boosting with the hinge loss.

2From Concept Checks
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Q1 Solution

Recall that the exponential margin loss is given by `(y , a) = e−ya where
y ∈ {−1, 1} and a ∈ R, and the 0− 1 loss is 1(y 6= sgn(a)). If sgn(y) 6= a
then ya ≤ 0 and

e−ya ≥ 1− ya ≥ 1 = 1(y 6= sgn(a)).

In general e−ya ≥ 0 so the we obtain the upper bound. To prove convexity,
we compute the second derivative and note that it is positive:

∂2

∂a2
e−ya = y2e−ya > 0.
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Q2 Solution

Recall that the hinge loss is given by `(y , a) = max(0, 1− ya). Define g by

g(y , a) =

{
−y if 1− ya > 0,
0 else.

Then g(y , a) is a subgradient of `(y , a) with respect to a. At stage m of
gradient boosting, we alredy have formed

fm−1 =
m−1∑
i=1

νihi .

We then compute the pseudoresiduals rm given by

rm = − (g(y1, fm−1(x1)), . . . , g(yn, fm−1(xn))) .

After building the mock dataset Dm = {(x1, (rm)1), . . . , (xn, (rm)n)} we
perform a least squares fit to obtain hm ∈ H. Then we can determine νm
(usually a small fixed value). Finally we let fm = fm−1 + νmhm.
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