Lab Notes: Multiclass Review and an Approach to Ranking

David S. Rosenberg

Let's review the multiclass classification framework, and then attempt to use the framework we developed for multiclass classification to address the ranking problem.

1 Multiclass Review

- General [Discrete] Output Space: \mathcal{Y} (e.g $\mathcal{Y} = \{1, ..., k\}$ for multiclass)
- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \to \mathbf{R}\}$ ("score functions").
- Multiclass Hypothesis Space (for k classes):

$$\mathcal{F} = \left\{ x \mapsto \operatorname*{arg\,max}_{i} h_{i}(x) \mid h_{1}, \dots, h_{k} \in \mathcal{H} \right\}.$$

In words, we have one score function for each class, and we predict the class that has the highest score.

- How to fit the h's?
 - One approach is one-vs-all.
 - But we can also train them jointly

We get the example (x_i, y_i) correct, if

$$h_{y_i}(x_i) > h_j(x_i)$$

for all $j \neq y_i$. In words, the score function for the correct class y_i is higher than the score functions for the incorrect classes. Equivalently,

$$h_{y_i}(x_i) > \max_{j \neq y_i} h_j(x_i).$$

Also equivalently, we want:

$$\mathbf{h}_{\mathbf{y}_{i}}(\mathbf{x}_{i}) - \max_{j \neq \mathbf{y}_{i}} \mathbf{h}_{j}(\mathbf{x}_{i}) > 0.$$

This should remind us of margin, which is positive iff our prediction has the right sign. Let ℓ be a margin-based loss (e.g. hinge loss or logistic loss), and try to minimize

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(h_{y_{i}}(x_{i})-\max_{j\neq y_{i}}h_{j}(x_{i})\right)$$

by searching over $h_1, \ldots, h_k \in \mathcal{H}$. This is a reasonable first approach to multiclass classification.

2 Reformulation with Compatibility Scores

The idea here is that, rather than having k score functions for k classes, let's have a single function that takes an input x and a class y as input, and produces a score measuring how "compatible" the class y is with the input x. We will call this a **compatibility score function**

$$h(x,y) \mapsto \mathbf{R}$$
.

(NOTE: In h(x,y), the second argument y takes discrete values in $\{1, ..., k\}$.)

The compatibility score approach absorbs the separate score function approach as a special case: Suppose we had $h_1, \ldots, h_k \in \mathcal{H}$ from the previous approach, we can construct an equivalent compatibility function by defining:

$$h(x,y) = h_y(x),$$

for $y \in \{1, \dots, k\}$. So then

• h(x,y) classifies(x_i,y_i) correctly iff

$$h(x_i, y_i) > h(x_i, y) \forall y \neq y_i$$

• Equivalently, if we define

$$\mathbf{m}_{i} = \mathbf{h}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}} \mathbf{h}(\mathbf{x}_{i}, \mathbf{y}),$$

then classification is correct if $m_i > 0$. Generally want m_i to be large.

3 Consider ranking problem

- 1. For a search query, retrieve 100 results that are keyword matches. (Or use some other fast approach with high recall.)
- 2. Let x represent the search query, any information about the user, user browser, user browsing history, etc.
- 3. Let y represent a particular webpage. (or item, etc.)
- Use a compatibility score function h(x,y) to rank the 100 pages, by plugging each of them in (as different y's with x remaining the same) to h(x,y) to get 100 scores.

For a given user/query x, we need to evaluate h(x,y) for each of the 100 pages we've identified as possibly related:

h(x = User 104232 with Query q, y=mathwords.com)h(x = User 104232 with Query q, y=mathematica.com)h(x = User 104232 with Query q, y=mathcad.com)

To create the compatibility function h(x,y), we will use features that depend jointly on x and y, such as:

- 1. A binary indicator feature for whether or not this user has clicked on page y before.
- 2. Page y has a topic category that's related to query q.

h(x, y) could be q linear or nonlinear function of these features.

A labeled example would be a triple:

$$(x_i, \{y_{i1}, \dots, y_{i5}\}, y_i^*),$$

where y_{i1}, \ldots, y_{i5} were 5 results shown to the user, and y_i^* is the result clicked. So loss for this example could be something like

$$\begin{split} L(x_{i}, \{y_{i1}, \dots, y_{i5}\}, y_{i}^{*}) &= \ell(m_{i}) \\ &= \ell \left(h(x_{i}, y_{i}^{*}) - \max_{y \in \{y_{i1}, \dots, y_{i5}\} - \{y_{i}^{*}\}} h(x_{i}, y) \right), \end{split}$$

for some margin-based loss function ℓ , such as hinge loss.

NOTE: In practice the approach described above is naive and should be adjusted. One major issue is that the ordering of the search results $y_{i1}, \ldots, y_{y_{i5}}$ has a large influence on which is most likely to be clicked. Burges's paper From RankNet to LambdaRank to LambdaMART: An Overview is a good reference for more practical models.