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Bayesian Decision Theory

Ingredients:
Parameter space Θ.
Prior: Distribution p(θ) on Θ.
Action space A.
Loss function: ` :A×Θ→ R.

The posterior risk of an action a ∈A is

r(a) := E [`(θ,a) | D]

=

∫
`(θ,a)p(θ | D)dθ.

It’s the expected loss under the posterior.

A Bayes action a∗ is an action that minimizes posterior risk:

r(a∗) = min
a∈A

r(a)
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The Posterior Predictive Distribution

Suppose we’ve already seen data D.
The posterior predictive distribution is given by

x 7→ p(y | x ,D) =

∫
p(y | x ;θ)p(θ | D)dθ.

This is an average of all conditional densities in our family, weighted by the posterior.
May not have closed form.
Numerical integral may be hard to compute.
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MAP Estimator Versus Posterior Predictive Distribution

How do we predict by posterior predictive distribution given a new data point x∗?
We can use ŷ = arg maxy p(y | x ,D)

What about our MAP estimator for θ?

θ̂= arg max
θ

p(θ | D)

We can also predict y by
ŷ = arg max

y
p(y | x ;θ= θ̂)

In general, the predictions from two methods are different.
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Questions
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Question 1

Question 1. (From DeGroot and Schervish) Let θ denote the proportion of registered voters in
a large city who are in favor of a certain proposition. Suppose that the value of θ is unknown,
and two statisticians A and B assign to θ the following different prior PDFs ξA(θ) and ξB(θ),
respectively:

ξA(θ) = 2θ for 0< θ < 1,
ξB(θ) = 4θ3 for 0< θ < 1.

In a random sample of 1000 registered voters from the city, it is found that 710 are in favor of
the proposition.

1 Find the posterior distribution that each statistician assigns to θ.
2 Find the Bayes estimate of θ (minimizer of posterior expected loss) for each statistician

based on the squared error loss function.
3 Show that after the opinions of the 1000 registered voters in the random sample had been

obtained, the Bayes estimates for the two statisticians could not possibly differ by more
than 0.002, regardless of the number in the sample who were in favor of the proposition.
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Question 1: Solution

Note that both prior distributions are from the Beta family.
1 We have

ξA(θ|x)∝ f (x |θ)ξA(θ)∝ θ711(1−θ)290

and
ξB(θ|x)∝ f (x |θ)ξB(θ)∝ θ713(1−θ)290.

Thus the posteriors from A and B are both beta with parameters (712,291) and
(714,291), respectively.

2 The respective means are 712
1003 and 714

1005 .
3 In general the two means are given by

a+2
1003

and
a+4
1005

.

The difference is less than 2/1000= .002.
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Question 2 and 3

Question 2. Two statistics students decide to compute 95% confidence intervals for the
distribution parameter θ using an i.i.d. sample X1, . . . ,Xn. Student B uses Bayesian
methods to find a 95% credible set [LB ,RB ] for θ. Student F uses frequentist methods to
find a 95% confidence interval [LF ,RF ] for θ. Both conclude that parameter θ is in their
respective intervals with probability at least .95. Who is correct? Explain.
Question 3. Suppose θ has prior distribution Beta(a,b) for some a,b > 0. Given θ,
suppose we make independent coin flips with heads probability θ. Find values of a,b and
the coin flips so that the posterior variance is larger than the prior variance. [Hint: Recall
that a Beta(a,b) random variable has variance given by

ab

(a+b)2(a+b+1)
.

Try b = 1.]
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Question 2: Solution

Question 2. Two statistics students decide to compute 95% confidence intervals for the
distribution parameter θ using an i.i.d. sample X1, . . . ,Xn. Student B uses Bayesian
methods to find a 95% credible set [LB ,RB ] for θ. Student F uses frequentist methods to
find a 95% confidence interval [LF ,RF ] for θ. Both conclude that parameter θ is in their
respective intervals with probability at least .95. Who is correct? Explain.
Solution:

The frequentist student is totally incorrect, since they have misunderstood what a frequentist
confidence interval is. Using frequentist methodology, θ is not a random variable, so it
doesn’t make sense to say it lies in some fixed interval [LF ,RF ]. The correct interpretation is
that if independent experiments like this were repeated, then at least 95% of the time
[LF ,RF ] will contain θ. That is, the interval is random not θ.
We can say that the Bayesian student is consistent. Recall that to compute the credible set,
the Bayesian student had to introduce some prior distribution π on θ. What we can say is if
someone believes π is correct, then it is rational, given the data, to conclude that θ will lie in
the posterior credible set with probability 95%.

Haau-Sing Li, Xintian Han (spring 2019 lab) (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 April 3, 2019 11 / 15



Question 3: Solution

Question 3. Suppose θ has prior distribution Beta(a,b) for some a,b > 0. Given θ,
suppose we make independent coin flips with heads probability θ. Find values of a,b and
the coin flips so that the posterior variance is larger than the prior variance. [Hint: Recall
that a Beta(a,b) random variable has variance given by

ab

(a+b)2(a+b+1)
.

Try b = 1.]
Solution: As hinted, let’s try a = 10, b = 1 and 9 coin flips all landing tails. The prior
variance is given by

10 ·1
(10+1)2(10+1+1)

=
5

726
≈ .0069

while the posterior variance is given by
10 ·10

(10+10)2(10+10+1)
=

1
84
≈ .0119.

Haau-Sing Li, Xintian Han (spring 2019 lab) (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 April 3, 2019 12 / 15



Question 4

Question 4. What would be the Maximum a Posteriori (MAP) estimator for λ for i.i.d.
{x1,x2, . . . ,xN } where xi ∼ exp(λ) with prior λ ∼ Uniform[u0,u1]?
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Question 4: Solution

Likelihood: L(x1, . . . ,xN |λ) = λ
Ne−λ(x1+···+xN)

log-likelihood: `(λ|x1, . . . ,xN) = N lnλ−λ(x1+ · · ·+ xN)

` ′(λ) = N
λ −(x1+ · · ·+ xN)


> 0 if 0< λ < 1/x̄ = N/(x1+ · · ·+ xN),

= 0 if λ= 1/x̄
< 0 if λ > 1/x̄

Prior: p(λ) = 1
u1−u0

1[u0,u1](λ).

Posterior: p(λ|x1, . . . ,xN)∝ L(x1, . . . ,xN |λ)p(λ) = λe
−λ(x1+···+xN)1[u0,u1](λ)

Maximum value of posterior is attained at

λ=


u0 if u0 > 1/x̄ ,

1/x̄ if u0 6 1/x̄ 6 u1

u1 if u1 < 1/x̄ .
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