Review for Midterm

DS-GA 1003 Machine Learning

NYU CDS

March 17, 2021

Contents

- Learning Theory Framework
- 2 Regularization
- Optimization
- 4 Classification
- 5 The Representer Theorem and Kernelization
- 6 MLE and Conditional Probability Models

Learning Theory Framework

Some Formalization

The Spaces

• \mathfrak{X} : input space

• y: outcome space

A: action space

Prediction Function (or "decision function")

A prediction function (or decision function) gets input $x \in \mathcal{X}$ and produces an action $a \in \mathcal{A}$:

$$f: \mathcal{X} \rightarrow \mathcal{A}$$
 $x \mapsto f(x)$

Loss Function

A loss function evaluates an action in the context of the outcome y.

$$\ell: \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$$
 $(a, y) \mapsto \ell(a, y)$

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{A}$ is

$$R(f) = \mathbb{E}\ell(f(x), y).$$

In words, it's the expected loss of f on a new example (x,y) drawn randomly from $P_{\mathfrak{X}\times\mathfrak{Y}}$.

Definition

A Bayes prediction function $f^*: \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

$$f^* \in \operatorname*{arg\,min}_f R(f)$$
,

where the minimum is taken over all functions from \mathfrak{X} to \mathcal{A} .

• The risk of a Bayes prediction function is called the Bayes risk.

Bayes Prediction Function

- If loss function is L2, then $f^*(x) = E[Y|X = x]$
- if loss function is L1, then $f^*(x)$ is the median of the distribution of Y conditioned on X = x.
- If \mathcal{Y} is discrete and loss function is 0-1 loss, then $f^*(x) = \underset{c \in \mathcal{Y}}{\operatorname{argmax}} \ p(y=c|x)$

Question: Let x be sampled uniformly from $\{-100, -99, \ldots, 99, 100\}$. For every sample x_i , y_i is generated as $y_i = x_i + \eta$, $\eta \sim \mathcal{N}(0, \sigma)$, $\sigma > 0$. What is the Bayes prediction function under L_2 and L_1 loss?

The Empirical Risk

- Let $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathfrak{P}_{\mathfrak{X} \times \mathfrak{Y}}$.
- The **empirical risk** of $f: \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• A function \hat{f} is an empirical risk minimizer if

$$\hat{f} \in \operatorname*{arg\,min}_{f} \hat{R}_{n}(f),$$

where the minimum is taken over all functions.

• But unconstrained ERM can overfit.

Constrained Empirical Risk Minimization

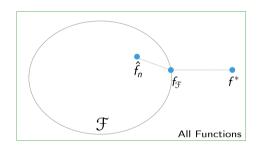
- ullet Hypothesis space \mathcal{F} , a set of [prediction] functions mapping $\mathcal{X} \to \mathcal{A}$
- ullet Empirical risk minimizer (ERM) in ${\mathfrak F}$ is

$$\hat{f}_n \in \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

ullet Risk minimizer in $\mathcal F$ is $f_{\mathcal F}^*\in\mathcal F$, where

$$f_{\mathcal{F}}^* \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y).$$

Error Decomposition



$$\begin{split} f^* &= \underset{f}{\arg\min} \, \mathbb{E}\ell(f(X),Y) \\ f_{\mathcal{F}} &= \underset{f \in \mathcal{F}}{\arg\min} \, \mathbb{E}\ell(f(X),Y)) \\ \hat{f_n} &= \underset{f \in \mathcal{F}}{\arg\min} \, \frac{1}{n} \sum_{i=1}^n \ell(f(x_i),y_i) \end{split}$$

- Approximation Error (of \mathfrak{F}) = $R(f_{\mathfrak{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

Excess Risk Decomposition for ERM

• The excess risk of the ERM \hat{f}_n can be decomposed:

Excess
$$\operatorname{Risk}(\hat{f}_n) = R(\hat{f}_n) - R(f^*)$$

$$= \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}.$$

Optimization Error

- In practice, we don't find the ERM $\hat{f}_n \in \mathcal{F}$.
- ullet Optimization algorithm returns $ilde{f}_n \in \mathcal{F}$, which we hope is good enough.
- Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then

Optimization Error =
$$R(\tilde{f}_n) - R(\hat{f}_n)$$
.

Extended decomposition:

Excess
$$\operatorname{Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= \underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\text{optimization error}} + \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$$

Question

Select true of false for each of the following statements:

- Approximation Error is a Random Variable
- Estimation Error is a Random Variable
- Optimization Error is a Random Variable.
- If the hypothesis space consists of all possible functions, then approximation error is non-zero.
- 5 Estimation Error can be negative.
- Optimization Error can be negative.
- The empirical risk of the ERM, $\hat{R}(\hat{f})$, is an unbiased estimator of the risk of the ERM $R(\hat{f})$. Does your answer change if it's a $\hat{R}(f)$ where f is independent of training data?

Question

For each, use \leq , \geqslant , or = to determine the relationship between the two quantities, or if the relationship cannot be determined. Throughout assume $\mathcal{F}_1, \mathcal{F}_2$ are hypothesis spaces with $\mathcal{F}_1 \subset \mathcal{F}_2$, and assume we are working with a fixed loss function ℓ .

- The estimation errors of two decision functions f_1 , f_2 that minimize the empirical risk over the same hypothesis space, where f_2 uses 5 extra data points.
- ② The approximation errors of the two decision functions f_1 , f_2 that minimize risk with respect to \mathcal{F}_1 , \mathcal{F}_2 , respectively (i.e., $f_1 = f_{\mathcal{F}_1}$ and $f_2 = f_{\mathcal{F}_2}$).
- **3** The empirical risks of two decision functions f_1 , f_2 that minimize the empirical risk over \mathcal{F}_1 , \mathcal{F}_2 , respectively. Both use the same fixed training data.
- The estimation errors (for \mathcal{F}_1 , \mathcal{F}_2 , respectively) of two decision functions f_1 , f_2 that minimize the empirical risk over \mathcal{F}_1 , \mathcal{F}_2 , respectively.
- **5** The risk of two decision functions f_1 , f_2 that minimize the empirical risk over \mathcal{F}_1 , \mathcal{F}_2 , respectively.

Regularization

Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure $\Omega: \mathcal{F} \to [0, \infty)$ and fixed $r \geqslant 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
s.t. $\Omega(f) \leqslant r$

- Choose *r* using validation data or cross-validation.
- Each r corresponds to a different hypothesis spaces. Could also write:

$$\min_{f \in \mathcal{F}_r} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega: \mathcal{F} \to [0, \infty)$ and fixed $\lambda \geqslant 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

- Choose λ using validation data or cross-validation.
- (Ridge regression in homework is of this form.)

Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter $\lambda \geqslant 0$ is

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where $||w||_2^2 = w_1^2 + \cdots + w_d^2$ is the square of the ℓ_2 -norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter $r \geqslant 0$ is

$$\hat{w} = \arg\min_{\|w\|_{2}^{2} \le r^{2}} \frac{1}{n} \sum_{i=1}^{n} \left\{ w^{T} x_{i} - y_{i} \right\}^{2}.$$

Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter $\lambda \geqslant 0$ is

$$\hat{w} = \underset{w \in \mathbb{R}^d}{\arg\min} \frac{1}{n} \sum_{i=1}^n \{ w^T x_i - y_i \}^2 + \lambda ||w||_1,$$

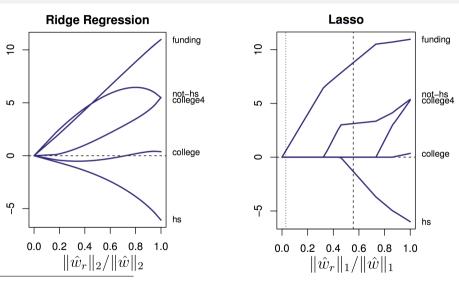
where $||w||_1 = |w_1| + \cdots + |w_d|$ is the ℓ_1 -norm.

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter $r \ge 0$ is

$$\hat{w} = \underset{\|w\|_{1} \leq r}{\arg \min} \frac{1}{n} \sum_{i=1}^{n} \{w^{T} x_{i} - y_{i}\}^{2}.$$

Ridge vs. Lasso: Regularization Paths

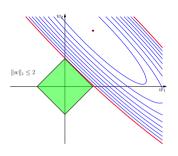


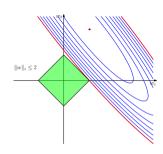
Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

Linearly Dependent Features: Take Away

- For identical features
 - ℓ_1 regularization spreads weight arbitrarily (all weights same sign)
 - ℓ_2 regularization spreads weight evenly
- Linearly related features
 - ullet ℓ_1 regularization chooses variable with larger scale, 0 weight to others
 - ullet ℓ_2 prefers variables with larger scale spreads weight proportional to scale

Correlated Features, ℓ_1 Regularization





- Intersection could be anywhere on the top right edge.
- Minor perturbations (in data) can drastically change intersection point very unstable solution.
- Makes division of weight among highly correlated features (of same scale) seem arbitrary.
 - If $x_1 \approx 2x_2$, ellipse changes orientation and we hit a corner. (Which one?)

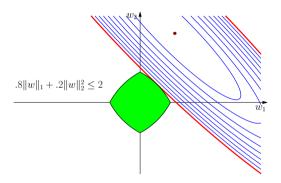
Elastic Net

• The elastic net combines lasso and ridge penalties:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda_1 \|w\|_1 + \lambda_2 \|w\|_2^2$$

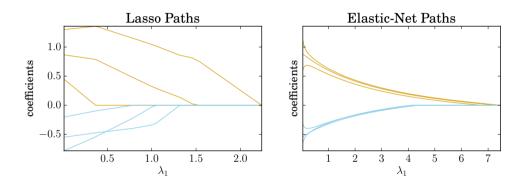
We expect correlated random variables to have similar coefficients.

Highly Correlated Features, Elastic Net Constraint



• Elastic net solution is closer to $w_2 = w_1$ line, despite high correlation.

Elastic Net Results on Model



- Lasso on left; Elastic net on right.
- Ratio of ℓ_2 to ℓ_1 regularization roughly 2:1.

Elastic Net Summary

- With uncorrelated features, we can get sparsity.
- Among correlated features (same scale), we spread weight more evenly.

Question on correlated features

We solve lasso and ridge regression where input lives in \mathbb{R}^4 . The first two features of all the input vector are duplicates of each other, or $x_{i1} = x_{i2}$ for all i. Consider the following weight vectors:

- $(0, 1.2, 6.7, 2.1)^T$
- $(0.6, 0.6, 6.7, 2.1)^T$
- $(1.2, 0, 6.7, 2.1)^T$
- $(-0.1, 1.3, 6.7, 2.1)^T$

Which of them are valid solution for a) Ridge Regression and b) Lasso Regression?

Finding Lasso Solution

- Many options.
- Convert to quadratic program using positive/negative parts

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda 1^T \left(w^+ + w^- \right)$$
subject to $w_i^+ \geqslant 0$ for all i , $w_i^- \geqslant 0$ for all i ,

- Coordinate descent
 - Lasso has closed form solution for coordinate minimizers!
- Subgradient descent

Optimization

Gradient Descent for Empirical Risk and Averages

- Suppose we have a hypothesis space of functions $\mathcal{F} = \{f_w : \mathcal{X} \to \mathcal{A} \mid w \in \mathbb{R}^d\}$
 - Parameterized by $w \in \mathbb{R}^d$.
- ERM is to find w minimizing

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)$$

- Suppose $\ell(f_w(x_i), y_i)$ is differentiable as a function of w.
- Then we can do gradient descent on $\hat{R}_n(w)$...

Gradient Descent: How does it scale with n?

• At every iteration, we compute the gradient at current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- We have to touch all n training points to take a single step. [O(n)]
- What if we just use an estimate of the gradient?

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Let's take a random subsample of size *N* (called a **minibatch**):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

• The minibatch gradient is

$$\nabla \hat{R}_N(w) = \frac{1}{N} \sum_{i=1}^N \nabla_w \ell(f_w(x_{m_i}), y_{m_i})$$

ullet Minibatch gradient is an unbiased estimate of full-batch gradient: $\mathbb{E}\left[\nabla\hat{R}_N(w)\right] = \nabla\hat{R}_n(w)$

How big should minibatch be?

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to touch)
 - Smaller $N \implies$ Worse estimate of gradient, but can be quite fast
- Even N = 1 works, it's traditionally called **stochastic gradient descent** (SGD).
- Quality of minibatch estimate depends on
 - size of minibatch
 - but is **independent** of full dataset size n

Subgradient Review

Definition (Subgradient and Subdifferential)

A vector g is a subgradient of (convex) $f: \mathbb{R}^d \to \mathbb{R}$ at x if for all z

$$f(z) \geqslant f(x) + g^{T}(z - x)$$

. The set of all subgradients at x is called the subdifferential of f at $x \ \partial f(x)$

Questions:

- (True/False) If f is convex and differentiable everywhere in the domain, then $\partial f(x) = {\nabla f(x)}$
- ② (True/False) The subdifferential of f at x, $\partial f(x)$ is always a convex set. (Null set is trivially complex)

Descent Directions

- A step direction is a descent direction if, for small enough step size, the objective function value always decreases.
- Negative gradient is a descent direction.
- A negative subgradient is not a descent direction. But always takes you closer to a minimizer.
- Negative stochastic or minibatch gradient direction is not a descent direction. But we have convergence theorems.
- Negative stochastic subgradient step direction is **not** a descent direction. But we have convergence theorems (not discussed in class).

Question on Gradient Descent

Decide whether the following statements apply to full batch gradient descent (GD), mini- batch GD, neither, or both.

Assume we're minimizing a differentiable, convex objective function $J(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$, and we are currently at w_t , which is not a minimum. For full batch GD, take $v = \nabla_w J(w_t)$, and for minibatch GD take v to be a minibatch estimate of $\nabla_w J(w_t)$ based on a random sample of the training data.

- For any step size $\eta > 0$, after applying the update rule $w_{t+1} \leftarrow w_{tl} \eta v$. we must have $J(w_{t+1}) < J(w_t)$.
- ② There must exist some $\eta > 0$ such that after applying the update rule $w_{t+1} + w_t \eta v$ we have $J(w_{t+1}) < J(w_t)$.
- 3 v is an unbiased estimator of the full batch gradient.

Classification

The Score Function

- Action space A = R Output space $y = \{-1, 1\}$
- Real-valued prediction function $f: \mathcal{X} \to \mathsf{R}$

Definition

The value f(x) is called the **score** for the input x.

- In this context, f may be called a score function.
- Intuitively, magnitude of the score represents the confidence of our prediction.

The Margin

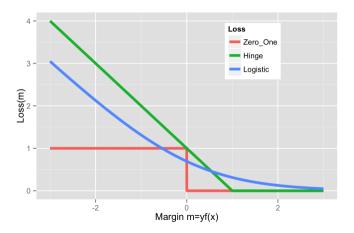
Definition

The margin (or functional margin) for predicted score \hat{y} and true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin often looks like yf(x), where f(x) is our score function.
- The margin is a measure of how correct we are.
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin.

Classification Losses

Logistic/Log loss: $\ell_{\text{Logistic}} = \log(1 + e^{-m})$



Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).

Support Vector Machine

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$
- ℓ_2 regularization (Tikhonov style)
- Loss $\ell(m) = \max\{1 m, 0\}$
- The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

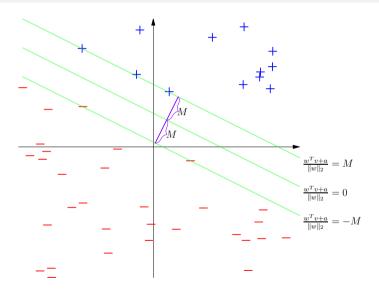
- Differentiable objective function
- n+d+1 unknowns and 2n affine constraints.
- A quadratic program that can be solved by any off-the-shelf QP solver.
- We arrived at this optimization problem also from a geometric prospective.

Linear Separability and Hard Margin SVM

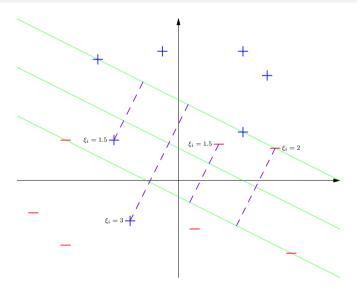
Definition (Linear Separability)

We say (x_i, y_i) for i = 1, ..., n are linearly separable if there is a $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y_i(w^Tx_i - b) > 0$ for all i. The set $\{v \in \mathbb{R}^d \mid w^Tv - b = 0\}$ is called a separating hyperplane.

Maximum Margin Separating Hyperplane



Soft Margin SVM (unlabeled points have $\xi_i = 0$)



Question on Classification

Suppose $x_1, \ldots, x_n \in \mathbb{R}^d$ and $y_1, \ldots, y_n \in \{-1, 1\}$. Here we look at y_i as the label of x_i . We say the data points are linearly separable if there is a vector $v \in \mathbb{R}^d$ and $a \in \mathbb{R}$ such that $v^T x_i > a$ when $y_i = 1$ and $v^T x_i < a$ for $y_i = -1$. Give a method for determining if the given data points are linearly separable.

The Representer Theorem and Kernelization

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, \dots, x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbb{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R:[0,\infty)\to R$ is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (**Loss term**).
- Ridge regression and SVM are of this form.
- What if we use lasso regression? No! ℓ_1 norm does not correspond to an inner product.

The Representer Theorem

Let $J(w) = R(||w||) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$ under conditions described above.

Theorem (Representer Theorem)

If J(w) has a minimizer, then it has a minimizer of the form

$$w^* = \sum_{i=1}^n \alpha_i x_i.$$

If R is strictly increasing, then all minimizers have this form.

Basic idea of proof:

- Let $M = \operatorname{span}(x_1, \dots, x_n)$. [the "span of the data"]
- Let $w = \text{Proj}_{M} w^{*}$, for some minimizer w^{*} of J(w).
- Then $\langle w, x_i \rangle = \langle w^*, x_i \rangle$, so loss part doesn't change.
- $||w|| \le ||w^*||$, since projection reduces norm. So regularization piece never increases.

Reparametrization with Representer Theorem

- Original plan:
 - Find $w^* \in \operatorname{arg\,min}_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$
 - Predict with $\hat{f}(x) = \langle w^*, x \rangle$.
- Plugging in result of representer theorem, it's equivalent to
 - Find $\alpha^* \in \operatorname{arg\,min}_{\alpha \in \mathbb{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha)$
 - Predict with $\hat{f}(x) = k_x^T \alpha^*$, where

$$K = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \ddots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix} \quad \text{and} \quad k_x = \begin{pmatrix} \langle x_1, x \rangle \\ \vdots \\ \langle x_n, x \rangle \end{pmatrix}$$

• Every element $x \in \mathcal{H}$ occurs inside an inner products with a training input $x_i \in \mathcal{H}$.

Kernelization

Definition

A method is **kernelized** if every feature vector $\psi(x)$ only appears inside an inner product with another feature vector $\psi(x')$. This applies to both the optimization problem and the prediction function.

• Here we are using $\psi(x) = x$. Thus finding

$$\alpha^* \in \operatorname*{arg\,min}_{\alpha \in \mathsf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K\alpha)$$

and making predictions with $\hat{f}(x) = k_x^T \alpha^*$ is a kernelization of finding

$$w^* \in \underset{w \in \mathcal{H}}{\operatorname{arg\,min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

and making predictions with $\hat{f}(x) = \langle w^*, x \rangle$.

Kernelization

- Once we have kernelized:
 - $\alpha^* \in \operatorname{arg\,min}_{\alpha \in \mathbb{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha)$
 - $\hat{f}(x) = k_x^T \alpha^*$
- We can do the "kernel trick".
- Replace each $\langle x, x' \rangle$ by k(x, x'), for any kernel function k, where $k(x, x') = \langle \psi(x), \psi(x') \rangle$.
- Predictions

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* k(x_i, x)$$

The Kernel Function: Why do we need this?

- Feature map: $\psi: \mathfrak{X} \to \mathfrak{H}$
- The kernel function corresponding to ψ is

$$k(x,x') = \langle \psi(x), \psi(x') \rangle.$$

- Why introduce this new notation k(x,x')?
- We can often evaluate k(x,x') without explicitly computing $\psi(x)$ and $\psi(x')$.
- For large feature spaces, can be much faster.

Kernelized SVM (From Lagrangian Duality)

• Kernelized SVM from computing the Lagrangian Dual Problem:

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i$$
s.t.
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

• If α^* is an optimal value, then

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$
 and $\hat{f}(x) = \sum_{i=1}^n \alpha_i^* y_i x_i^T x$.

• Note that the prediction function is also kernelized.

Sparsity in the Data from Complementary Slackness

Kernelized predictions given by

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* y_i x_i^T x.$$

• By a Lagrangian duality analysis (specifically from complementary slackness), we find

$$y_i \hat{f}(x_i) < 1 \implies \alpha_i^* = \frac{c}{n}$$

 $y_i \hat{f}(x_i) = 1 \implies \alpha_i^* \in \left[0, \frac{c}{n}\right]$
 $y_i \hat{f}(x_i) > 1 \implies \alpha_i^* = 0$

- So we can leave out any x_i "on the good side of the margin" $(y_i \hat{f}(x_i) > 1)$.
- x_i 's that we must keep, because $\alpha_i^* \neq 0$, are called **support vectors**.

Question on Kernel

Consider the objective function

$$J(w) = \|Xw - y\|_1 + \lambda \|w\|_2^2$$

Assume we have a positive semidefinite kernel k.

- What is the kernelized version of this objective?
- ② Given a new test point x, find the predicted value.

MLE and Conditional Probability Models

Maximum Likelihood Estimation

• Suppose $\mathfrak{D} = (y_1, \dots, y_n)$ is an i.i.d. sample from some distribution.

Definition

A maximum likelihood estimator (MLE) for θ in the parametric model $\{p(y;\theta) \mid \theta \in \Theta\}$ is

$$\begin{split} \hat{\theta} &\in & \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log p(\mathcal{D}, \hat{\theta}) \\ &= & \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{i=1}^{n} \log p(y_i; \theta). \end{split}$$

Maximum Likelihood Estimation

- Finding the MLE is an **optimization problem**.
- For some model families, calculus gives a closed form for the MLE.
- Can also use numerical methods we know (e.g. SGD).

Conditional Distribution Estimation (Generalized Regression)

- Task: Given x, predict probability distribution p(y|x)
- Method:
 - **Q** Represent p(y|x) with parametric families of distributions: $p(y;\theta(x))$ with parameters θ .
 - **2** Maximize likelihood of training data: $\hat{\theta} \in \arg \max_{\theta} \log p(\mathcal{D}, \hat{\theta})$
- Models covered:
 - Logistic regression (Bernoulli distribution)
 - Poisson regression (Poisson distribution)
 - 3 Conditional Gaussian/Linear regression (Normal distribution, fixed variance)
 - Multinomial Logistic Regression (Multinoulli/Categorical distribution)

Linear Probabilistic Classifiers

- Setting: $\mathfrak{X} = \mathbb{R}^d$, \mathfrak{Y} arbitrary for now
- Want prediction function to map each $x \in \mathbb{R}^d$ to $\theta \in \Theta$ for $p(y; \theta(x))$.
- For a linear method, we first extract information from $x \in \mathbb{R}^d$ and summarize in a single number with a linear function:

$$\underbrace{x}_{\in \mathsf{R}^d} \mapsto \underbrace{w^T x}_{\in \mathsf{R}}$$

(That number is analogous to the score in classification.)

- As usual, $x \mapsto w^T x$ will include affine functions if we include a constant feature in x.
- $w^T x$ is called the **linear predictor**.
- Still need to map this to Θ .

The Transfer Function

• Need a function to map the linear predictor in R to Θ :

$$\underbrace{x}_{\in \mathbb{R}^d} \mapsto \underbrace{w^T x}_{\in \mathbb{R}} \mapsto \underbrace{f(w^T x)}_{\in \Theta} = \theta,$$

where $f: \mathbb{R} \to \Theta$. We'll call f the **transfer** function.

- So prediction function is $x \mapsto f(w^T x)$.
- The prediction function gives us the parameter for $p(y; \theta(x))$ used to estimate p(y|x).

Conditional Probability Modeling as Statistical Learning

- ullet Input space ${\mathfrak X}$
- Outcome space y
- All pairs (x,y) are independent with distribution $P_{\chi \times y}$.
- Action space $\mathcal{A} = \{p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y}\}.$
- Hypothesis space \mathcal{F} contains decision functions $f: \mathcal{X} \to \mathcal{A}$.
- Maximum likelihood estimation for dataset $\mathcal{D} = ((x_1, y_1), \dots, (x_n, y_n))$ is

$$\hat{f}_{\mathsf{MLE}} \in \underset{f \in \mathcal{F}}{\mathsf{arg\,max}} \sum_{i=1}^{n} \log [f(x_i)(y_i)]$$

Conditional Probability Modeling as Statistical Learning

• Take loss $\ell: \mathcal{A} \times \mathcal{Y} \to \mathsf{R}$ for a predicted PDF or PMF p(y) and outcome y to be

$$\ell(p, y) = -\log p(y)$$

• The risk of decision function $f: \mathcal{X} \to \mathcal{A}$ is

$$R(f) = -\mathbb{E}_{x,y} \log [f(x)(y)],$$

where f(x) is a PDF or PMF on \mathcal{Y} , and we're evaluating it on y.

Conditional Probability Modeling as Statistical Learning

• The empirical risk of f for a sample $\mathcal{D} = \{y_1, \dots, y_n\} \in \mathcal{Y}$ is

$$\hat{R}(f) = -\frac{1}{n} \sum_{i=1}^{n} \log [f(x_i)(y_i)].$$

This is called the negative **conditional log-likelihood**.

Thus for the negative log-likelihood loss, ERM and MLE are equivalent

Question on Maximum Likelihood Estimation

- Suppose we have samples x_1, \ldots, x_n i.i.d. drawn from uniform distribution $\mathcal{U}(-a, a)$. Find the maximum likelihood estimator of a.
- Which of the following models can be learned by MLE?
 - Perceptron
 - Logistic regression
 - SVM

References

- DS-GA 1003 Machine Learning Spring 2019
- DS-GA 1003 Machine Learning Spring 2020