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Learning Theory Framework
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Bayes Prediction Function

If loss function is L2, then f ∗(x) = E [Y |X = x ]

if loss function is L1, then f ∗(x) is the median of the distribution of Y conditioned on
X = x .
If Y is discrete and loss function is 0−1 loss, then f ∗(x) = argmax

c∈Y
p(y = c |x)

Question: Let x be sampled uniformly from {−100,−99, . . . ,99,100}. For every sample xi , yi is
generated as yi = xi +η, η ∼ N(0,σ), σ > 0. What is the Bayes prediction function under L2
and L1 loss?
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Bayes Prediction Function - Solution

Generating distribution for yi ∼ N(xi ,σ).
If loss function is L2, then f ∗(x) = E [Y |X = x ] - That is the mean, hence f ∗(x) = x

if loss function is L1, then f ∗(x) is the median of the distribution of Y conditioned on
X = x . - As the median of Gaussian distribution is the same as its mean, f ∗(x) = x
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Error Decomposition - I

Select true of false for each of the following statements:
1 Approximation Error is a Random Variable
2 Estimation Error is a Random Variable
3 Optimization Error is a Random Variable.
4 If the hypothesis space consists of all possible functions, then approximation error is

non-zero.
5 Estimation Error can be negative.
6 Optimization Error can be negative.
7 The empirical risk of the ERM, R̂(f̂ ), is an unbiased estimator of the risk of the ERM

R(f̂ ). Does your answer change if it’s a R̂(f ) where f is independent of training data?
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Solution

1 False - Approximation Error (of F) = R(fF)−R(f ∗), where risk R(f ) = E`(f (X ),y) - is a
deterministic quantity

2 True - Estimation error (of f̂n in F) = R(f̂n)−R(fF), where
f̂n = argminf∈F

1
n

∑n
i=1 `(f (xi ),yi ) is dependent on random sample of size n

3 True - Optimization Error (of f̃n) = R(f̃n)−R(f̂n), where f̃n is the function our
optimization method returns - also dependent of random data sample

4 False - It would be zero. Hypothesis space would also include f ∗ leading to R(fF) = R(f ∗)

5 False - by definition above R(f̂n) can at best be equal to R(fF)

6 True - Due to randomness of optimization algorithm, solution can converge to a f̃n that
results in lower risk

7 If f̂ is learnt from the training data, the empirical risk of the ERM doesn’t depict the true
distribution risk. This is why we use a test set to approximate its true risk.

False
True
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Error Decomposition - II

For each, use 6, >, or = to determine the relationship between the two quantities, or if the
relationship cannot be determined. Throughout assume F1,F2 are hypothesis spaces with
F1 ⊂ F2, and assume we are working with a fixed loss function `.

1 The estimation errors of two decision functions f1, f2 that minimize the empirical risk over
the same hypothesis space, where f2 uses 5 extra data points.

2 The approximation errors of the two decision functions f1, f2 that minimize risk with
respect to F1,F2, respectively (i.e., f1 = fF1 and f2 = fF2).

3 The empirical risks of two decision functions f1, f2 that minimize the empirical risk over
F1,F2, respectively. Both use the same fixed training data.

4 The estimation errors (for F1,F2, respectively) of two decision functions f1, f2 that
minimize the empirical risk over F1,F2, respectively.

5 The risk of two decision functions f1, f2 that minimize the empirical risk over F1,F2,
respectively.
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Solution

1 Roughly speaking, more data is better, so we would tend to expect that f2 will have lower
estimation error. That said, this is not always the case, so the relationship cannot be
determined.

2 The approximation error of f1 will be larger.
3 The empirical risk of f1 will be larger.
4 Roughly speaking, increasing the hypothesis space should increase the estimation error

since the approximation error will decrease, and we expect to need more data. That said,
this is not always the case, so the answer is the relationship cannot be determined.

5 Cannot be determined.
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Regularization
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Correlated features

We solve lasso and ridge regression where input lives in R4. The first two features of all the
input vector are duplicates of each other, or xi1 = xi2 for all i . Consider the following weight
vectors:

1 (0,1.2,6.7,2.1)T

2 (0.6,0.6,6.7,2.1)T

3 (1.2,0,6.7,2.1)T

4 (−0.1,1.3,6.7,2.1)T

Which of them are valid solution for a) Ridge Regression and b) Lasso Regression?
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Correlated features - Solution

a) Ridge Regression
2 (0.6,0.6,6.7,2.1)T - `2 regularization spreads weight evenly for identical features

b) Lasso Regression
1,2,3 - `1 regularization spreads weight arbitrarily (all weights same sign)
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Optimization
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Question on Subgradient

Definition (Subgradient and Subdifferential)

A vector g is a subgradient of (convex) f : Rd → R at x if for all z

f (z)> f (x)+gT (z− x)

. The set of all subgradients at x is called the subdifferential of f at x ∂f (x)

Questions:
1 (True/False) If f is convex and differentiable everywhere in the domain, then
∂f (x) = {∇f (x)}

2 (True/False) The subdifferential of f at x , ∂f (x) is always a convex set. (Null set is
trivially complex)
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Subgradient - Solution

1 (True) If f is convex and differentiable everywhere in the domain, then
∂f (x) = {∇f (x)}
By the gradient (first-order) conditions for convexity, we know that ∇f (x) ∈ ∂f (x). Next
suppose g ∈ ∂f (x). This means that for all v ∈ Rn and h ∈ R we have:

f (x +hv)> f (x)+hgT v =⇒ f (x +hv)− f (x)

h
> gT v

Using −h in place of h gives

f (x −hv)> f (x)−hgT v =⇒ gT v >
f (x −hv)− f (x)

−h

Taking limits as h→ 0 gives ∇f (x)T v > gT v >∇f (x)T v
Thus all terms are equal. Subtracting gives (∇f (x)−g)T v = 0 which holds for all v ∈ Rn.
Letting v =∇f (x)−g proves ‖∇f (x)−g‖22 = 0 giving the result.
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Subgradient - Solution

(True) The subdifferential of f at x, ∂f (x) is always a convex set.
Fix f : Rn→ R and x ∈ Rn. Then the subdifferential ∂f (x) is a convex set.
Let g1,g2 ∈ ∂f (x) and t ∈ (0,1). We must show (1− t)g1+ tg2 is a subgradient. Note
that, for any y ∈ Rn, we have

f (x)+((1− t)g1+ tg2)
T (y − x) = (1− t)

(
f (x)+gT

1 (y − x)
)
+ t

(
f (x)+gT

2 (y − x)
)

6 (1− t)f (y)+ tf (y)

= f (y)
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Question on Gradient Descent

Decide whether the following statements apply to full batch gradient descent (GD),
mini-batch GD, neither, or both.

Assume we’re minimizing a differentiable, convex objective function J(w) = 1
n

∑n
i=1 fi (w), and

we are currently at wt , which is not a minimum. For full batch GD, take v =∇wJ (wt), and for
minibatch GD take v to be a mini-batch estimate of ∇wJ (wt) based on a random sample of
the training data.

1 For any step size η > 0, after applying the update rule wt+1← wt −ηv . we must have
J (wt+1)< J (wt).

2 There must exist some η > 0 such that after applying the update rule wt+1← wt −ηv we
have J (wt+1)< J (wt).

3 v is an unbiased estimator of the full batch gradient.

DS-GA 1003 Machine Learning (NYU CDS) Recitation 7: Midterm Review March 22, 2021 17 / 27



Gradient Descent - Solution

1 Neither.
Depends on whether the learning rate is good.
Moreover, for mini-batch GD, it also depends on whether v is representative enough.

2 Full batch.
For mini-batch GD, it depends on whether v is representative enough.

3 Both.
Proved in lecture
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Classification
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Question on Classification

Suppose x1, . . . ,xn ∈ Rd and y1, . . . ,yn ∈ {−1,1}. Here we look at yi as the label of xi . We say
the data points are linearly separable if there is a vector v ∈ Rd and a ∈ R such that vT xi > a
when yi = 1 and vT xi < a for yi =−1. Give a method for determining if the given data points
are linearly separable.
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Solution

Solve the hard-margin SVM problem:

minimizew ,b ‖w‖22
subject to yi

(
wT xi +b

)
> 1; for all i = 1, . . . ,n

If the resulting problem is feasible, then the data is linearly separable
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The Representer Theorem and Kernelization
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Kernelization

Consider the objective function

J(w) = ‖Xw − y‖1+λ‖w‖22

Assume we have a positive semidefinite kernel k .
1 What is the kernelized version of this objective?
2 Given a new test point x , find the predicted value.
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Kernelization - Solution

1 J(α) = ‖Kα− y‖1+λαTKα, where Kij = k (xi ,xj) . Here xTi is the ith row of X .
2 fα(x) =

∑n
i=1αik (xi ,x).
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MLE and Conditional Probability Models
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Maximum Likelihood Estimation

1 Suppose we have samples x1, . . . ,xn i.i.d. drawn from uniform distribution U(−a,a). Find
the maximum likelihood estimator of a.

2 Which of the following models can be learned by MLE?
Perceptron
Logistic regression
SVM
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Maximum Likelihood Estimation - Solution

1 The likelihood is:

L(−a,a) = Πn
i=1

(
1
2a

1[−a,a](xi )

)
The likelihood is greater than zero if and only −a6min(x1, . . . ,xn) and a>max(x1, . . . ,xn).
When above conditions are satisfied, the likelihood is a monotonically decreasing function of
2a.
And the smallest a will be attained when a =max(|x1|, . . . , |xn|) to satisfy the conditions.
Therefore, a =max(|x1|, . . . , |xn|) give us the MLE.

2 Logistic Regression
Only probabilistic model amongst the three, utilizes Bernoulli distribution
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