Review: MLE and Conditional Probability Models

Haau-Sing Li

CDS, NYU

March 10, 2019

Haau-Sing Li (CDS, NYU)

DS-GA 1003 / CSCI-GA 2567

Contents

Maximum Likelihood

2 Conditional Probability Models

Maximum Likelihood Estimation

• Suppose $\mathcal{D} = (y_1, \dots, y_n)$ is an i.i.d. sample from some distribution.

Definition

A maximum likelihood estimator (MLE) for θ in the model $\{p(y; \theta) \mid \theta \in \Theta\}$ is

$$\hat{\theta} \in \arg \max_{\theta \in \Theta} \log p(\mathcal{D}, \hat{\theta})$$

$$= \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \log p(y_i; \theta).$$

- Finding the MLE is an optimization problem.
- For some model families, calculus gives a closed form for the MLE.
- Can also use numerical methods we know (e.g. SGD).

Estimating Distributions, Overfitting, and Hypothesis Spaces

- Just as in classification and regression, MLE can overfit!
- Example Probability Models:
 - $\mathcal{F} = \{ \mathsf{Poisson distributions} \}.$
 - $\mathcal{F} = \{ \text{Negative binomial distributions} \}.$
 - $\mathcal{F} = \{\text{Histogram with 10 bins}\}$
 - $\mathcal{F} = \{\text{Histogram with bin for every } y \in \mathcal{Y}\} \text{ [will likely overfit for continuous data]}$
- How to judge which model works the best?
 - Choose the model with the highest likelihood on validation set.

Conditional Probability Models

Bernoulli Regression

- Setting: $\mathcal{X} = \mathsf{R}^d$, $\mathcal{Y} = \{0, 1\}$
- For each x, we predict a distribution on $\mathcal{Y} = \{0, 1\}$.
- We specify the **Bernoulli parameter** $\theta = p(y = 1)$.
- We use transfer function to map a predictor (e.g. Linear Predictor) to $\{0, 1\}$, referring to the Bernoulli distribution Bernoulli (θ) .
- Linear Probabilistic Classifier:

$$\underbrace{x}_{\in \mathbb{R}^d} \mapsto \underbrace{w^T x}_{\in \mathbb{R}} \mapsto \underbrace{f(w^T x)}_{\in [0,1]} = \theta,$$

Bernoulli Regression: MLE

• It will be convenient to write likelihood of w for (x, y) as this as

$$p(y | x; w) = [f(w^T x)]^y [1 - f(w^T x)]^{1-y}$$

• With data \mathcal{D} : $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \{0, 1\}$, we have log-likelihood:

$$\log p(\mathcal{D}; w) = \sum_{i=1}^{n} \left(y_i \log f(w^T x_i) + (1 - y_i) \log \left[1 - f(w^T x_i) \right] \right)$$

which is the negative of the **negative log-likelihood** objective J(w).

• Optimization: Week 2. (Note: J(w) is convex.)

- Input space $\mathfrak{X} = \mathsf{R}^d$, Output space $\mathfrak{Y} = \{0, 1, 2, 3, 4, ...\}$, Action space $\mathcal{A} = (0, \infty)$.
- In Poisson regression, prediction functions produce a Poisson distribution with mean parameter $\lambda \in (0, \infty)$.
- In Poisson regression, x enters linearly: $x \mapsto \underbrace{w^T x}_{R} \mapsto \lambda = \underbrace{f(w^T x)}_{(0,\infty)}$.
 - standard transfer function: $f(w^T x) = \exp(w^T x)$.

Poisson Regression: MLE

 $\bullet\,$ The likelihood for w on the full dataset ${\mathcal D}$ is

$$\log p(\mathcal{D}; w) = \sum_{i=1}^{n} \left[y_i w^T x_i - \exp \left(w^T x_i \right) - \log \left(y_i ! \right) \right]$$

• To get MLE, need to maximize

$$J(w) = \log p(\mathcal{D}; w)$$

over $w \in \mathsf{R}^d$.

• No closed form for optimum, but it's concave, so easy to optimize.

Gaussian Linear Regression

- Input space $\mathcal{X} = \mathsf{R}^d$, Output space $\mathcal{Y} = \mathsf{R}$, Action space $\mathcal{A} = \mathsf{R}$.
- In Gaussian regression, prediction functions produce a distribution $\mathcal{N}(\mu,\sigma^2).$
 - Assume σ^2 is known.
 - We predict $\mu \in R$.

• In Gaussian linear regression, x enters linearly: $x \mapsto \underbrace{w^T x}_{R} \mapsto \mu = \underbrace{f(w^T x)}_{R}$.

• Identity transfer function: $f(w^T x) = w^T x$.

Gaussian Regression: MLE

- We assume data as i.i.d. samples.
- The conditional log-likelihood is:

$$\sum_{i=1}^{n} \log p(y_i \mid x_i; w) = constant + \sum_{i=1}^{n} \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right)$$

• The MLE is

$$w^* = \operatorname*{arg\,min}_{w \in \mathsf{R}^d} \sum_{i=1}^n (y_i - w^T x_i)^2$$

• This is exactly the objective function for least squares.

Multinomial Logistic Regression

- Setting: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{1, \dots, k\}$
- Represent categorical distribution by probability vector $\theta = (\theta_1, \dots, \theta_k) \in \mathsf{R}^k$:

• $\sum_{i=1}^{k} \theta_i = 1$ and $\theta_i \ge 0$ for i = 1, ..., k (i.e. θ represents a **distribution**)

• We follow the same steps as binominal logistic regression, except for the transfer function.

• Softmax Transfer Function:

$$(s_1,\ldots,s_k)\mapsto \theta = \left(\frac{e^{s_1}}{\sum_{i=1}^k e^{s_i}},\ldots,\frac{e^{s_k}}{\sum_{i=1}^k e^{s_i}}\right)$$

Review Questions

• Question 1: Suppose we have samples x_1, \ldots, x_n i.i.d drawn from Bernoulli(p). Find the maximum likelihood estimator of p.

Solution:

• The likelihood is:

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{(1-x_i)}.$$

• The log-likelihood is:

$$\ell(p) = \log p \sum_{i=1}^{n} x_i + \log(1-p) \sum_{i=1}^{n} (1-x_i).$$

• Set the derivative of log-likelihood w.r.t. *p* to zero:

$$\frac{\partial \ell(p)}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{\sum_{i=1}^{n} (1-x_i)}{1-p} = 0.$$

• Solving the equation above, we have:

$$p=\frac{1}{n}\sum_{i=1}^n x_i.$$

• The second derivative of log-likelihood w.r.t. *p* is

$$\frac{\partial^2 \ell(p)}{\partial p^2} = \frac{-\sum_{i=1}^n x_i}{p^2} - \frac{\sum_{i=1}^n (1-x_i)}{(1-p)^2}.$$

- Since $p \in [0, 1]$ and $x_i \in \{0, 1\}$, the second derivative is always negative. The log-likelihood is concave. Therefore, $p = \frac{1}{n} \sum_{i=1}^{n} x_i$ gives us the MLE.
- A twice differentiable function of one variable is concave on an interval if and only if its second derivative is non-positive there!
- Why cannot we have the same closed form solution for logistic regression?

Haau-Sing Li (CDS, NYU)

DS-GA 1003 / CSCI-GA 2567

• Question 2: Suppose we have samples x_1, \ldots, x_n i.i.d drawn from uniform distribution $\mathcal{U}(a, b)$. Find the maximum likelihood estimator of a and b.

Solution:

• The likelihood is:

$$L(a,b) = \prod_{i=1}^{n} \left(\frac{1}{b-a} \mathbb{1}_{[a,b]}(x_i) \right)$$

• Let $x_{(1)}, \ldots, x_{(n)}$ be the order statistics.

- The likelihood is greater than zero if and only $a < x_{(1)}$ and $b > x_{(n)}$.
- When $a < x_{(1)}$ and $b > x_{(n)}$, the likelihood is a monotonically decreasing function of (b-a).
- And the smallest (b-a) will be attained when $b = x_{(n)}$ and $a = x_{(1)}$.
- Therefore, $b = x_{(n)}$ and $a = x_{(1)}$ give us the MLE.

Question 3: We want to fit a regression model where Y|X = x ~ U([0, e^{w^Tx}]) for some w ∈ R^d. Given i.i.d. data points (X₁, Y₁),..., (X_n, Y_n) ∈ R^d × R, give a convex optimization problem that finds the MLE for w.

Solution: The likelihood *L* is given by

$$L(w; x_1, y_1, ..., x_n, y_n) = \prod_{i=1}^n \frac{\mathbb{1}(y_i \leq e^{w^T x_i})}{e^{w^T x_i}}.$$

Taking logs we get

$$-\sum_{i=1}^{n} w^{T} x_{i} = -w^{T} \left(\sum_{i=1}^{n} x_{i} \right)$$

if $y_i \leq \exp(w^T x_i)$ for all *i*, or $-\infty$ otherwise. Thus we obtain the linear program

minimize
$$w^T \left(\sum_{i=1}^n x_i \right)$$

subject to $\log(y_i) \leq w^T x_i$ for $i = 1, ..., n$

Haau-Sing Li (CDS, NYU)

DS-GA 1003 / CSCI-GA 2567

- Question 4: Suppose we have input-output pairs {(x₁, y₁),..., (x_n, y_n)}, where x_i ∈ ℝ^p and y_i ∈ N = {0, 1, 2, 3, ...} for i = 1, ..., n. Our task is to train a Poisson regression to model the data. Assume the linear coefficients in the model is w.
 - Suppose a test point x* is orthogonal to the space generated by the training data. What is the prediction l₂ regularized Poisson GLM make on the test point?
 - 2 Will the solution of the parameters \hat{w} still be sparse when we use ℓ_1 regularization?

• Suppose a test point x* is orthogonal to the space generated by the training data. What is the prediction ℓ_2 regularized Poisson GLM make on the test point?

Solution: ℓ_2 penalized Poisson regression objective:

$$\hat{J}(w) = -\sum_{i=1}^{n} \left[y_i w^T x_i - \exp(w^T x_i) - \log(y_i!) \right] + \lambda \|w\|_2^2$$

From Representer Theorem, the minimizer $\hat{w} = \sum_{i=1}^{n} \alpha_i x_i$. The prediction is

$$\exp(w^T x^*) = \exp(\sum_{i=1}^n \alpha_i x_i^T x^*) = \exp(0) = 1$$

• Will the solution of the parameters \hat{w} still be sparse when we use ℓ_1 regularization? **Solution:** Negative log-likelihood of Poisson regression is a convex function. The sublevel set is a convex set. The level set is the boundary of the sublevel set. When the level set approaches the diamond (level set of the ℓ_1 norm), it is still likely to hit the corner of the diamond.

- DS-GA 1003 Machine Learning Spring 2019
- DS-GA 1003 Machine Learning Spring 2020