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Maximum Likelihood Estimation

@ Suppose D = (y1,...,yn) is an i.i.d. sample from some distribution.

Definition
A maximum likelihood estimator (MLE) for 6 in the model {p(y;0) |0 € B} is

6 < argmaxlogp(D,6)

CISC)
n
= arg maxZ log p(y;;0).
0cO®
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Maximum Likelihood Estimation

e Finding the MLE is an optimization problem.
@ For some model families, calculus gives a closed form for the MLE.

e Can also use numerical methods we know (e.g. SGD).
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Estimating Distributions, Overfitting, and Hypothesis Spaces

@ Just as in classification and regression, MLE can overfit!

@ Example Probability Models:

F ={Poisson distributions}.

F ={Negative binomial distributions}.

F ={Histogram with 10 bins}

J ={Histogram with bin for every y € Y} [will likely overfit for continuous data]

@ How to judge which model works the best?
o Choose the model with the highest likelihood on validation set.
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Conditional Probability Models J
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Bernoulli Regression

Setting: X =R?, Y={0,1}
For each x, we predict a distribution on Y ={0, 1}.
We specify the Bernoulli parameter 0 = p(y =1).

We use transfer function to map a predictor (e.g.Linear Predictor) to {0, 1}, referring to
the Bernoulli distribution Bernoulli(9).

Linear Probabilistic Classifier:

x —wixe flwx)=6,

< = .
€Rd €R €[0,1]

o w'x: the linear predictor; f: the transfer function.
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Bernoulli Regression: MLE

o It will be convenient to write likelihood of w for (x,y) as this as
1—
ply | x;w) = [f(w X)} [1—f(WTX)] .

o With data D: (x1,y1),..., (Xm ¥n) € R? x{0,1}, we have log-likelihood:

n

log p(D; w) Z y,Iogf wx;))+ (1—y;)log [1—f(WTX,')])
i=1

which is the negative of the negative log-likelihood objective J(w).
o Optimization: Week 2. (Note: J(w) is convex.)
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Poisson Regression

@ Input space X =RY, Output space Y ={0,1,2,3,4,...}, Action space A = (0, 0).

@ In Poisson regression, prediction functions produce a Poisson distribution with mean
parameter A € (0,00).
@ In Poisson regression, x enters linearly: x — w’x — A= f(w'x).

~—
R (0,00)

o standard transfer function: f(w’x) =exp (wx).
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Poisson Regression: MLE

@ The likelihood for w on the full dataset D is

n

logp(D;w) = > [yiw”xi—exp(wx) —log(y!)]

i=1
@ To get MLE, need to maximize
J(w) =log p(D;w)

over w € RY.

@ No closed form for optimum, but it's concave, so easy to optimize.
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Gaussian Linear Regression

@ Input space X =RY, Output space Y =R, Action space A =R.

@ In Gaussian regression, prediction functions produce a distribution N(y, 02).
e Assume o2 is known.
o We predict p € R.

o In Gaussian linear regression, x enters linearly: x — w ' x+— pu=f(w'x).

~——
R R

o ldentity transfer function: f(w’x)=wTx.
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Gaussian Regression: MLE

@ We assume data as i.i.d. samples.

@ The conditional log-likelihood is:
n n L T . 2
; log p(y;i | xi;w) = constant—i—; (—W)

@ The MLE is

w* =argmin Z(y,- —w'x;)?

weRd iy

o This is exactly the objective function for least squares.
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Multinomial Logistic Regression

@ Setting: X = R, Y={1,..., k}

o Represent categorical distribution by probability vector 8 = (01,...,0,) € R¥:
° Zf'(:l 0;=1and 6; >0fori=1,...,k (i.e. O represents a distribution)

@ We follow the same steps as binominal logistic regression, except for the transfer function.
o Softmax Transfer Function:

es1 ek
(s1,....,5() = 0= p e =R :
D i€ D i€
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Review Questions J
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Maximum Likelihood

@ Question 1: Suppose we have samples xi, ..., x, i.i.d drawn from Bernoulli(p). Find the
maximum likelihood estimator of p.
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Maximum Likelihood

Solution:
o The likelihood is:
L(p) =T7_,pi(1—p) =),

o The log-likelihood is:

n

Up)=logpy xi+log(1—p) Y (1—x)).

i=1 i=1
o Set the derivative of log-likelihood w.r.t. p to zero:

olp) _ Y ilaxi 2 ia(l—x) 0
op P 1-p '
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Maximum Likelihood

@ Solving the equation above, we have:
1 n
pP= E ;X,’.
=

@ The second derivative of log-likelihood w.r.t. pis

PUp) _ ~T1x TI(1-x)

dp? p? (1-p)?

@ Since p € [0,1] and x; €{0, 1}, the second derivative is always negative. The log-likelihood
is concave. Therefore, p=13" | x; gives us the MLE.

@ A twice differentiable function of one variable is concave on an interval if and only if its
second derivative is non-positive there!

@ Why cannot we have the same closed form solution for logistic regression?
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Maximum Likelihood

@ Question 2: Suppose we have samples xi, ..., x, i.i.d drawn from uniform distribution
U(a, b). Find the maximum likelihood estimator of a and b.
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Maximum Likelihood

Solution:
o The likelihood is:

L(a,) =TTy (52 L))

Let x(1),...,X(n) be the order statistics.

The likelihood is greater than zero if and only a < x(1) and b > x(,).

When a < x(1) and b > x(,,), the likelihood is a monotonically decreasing function of (b—a).
And the smallest (b—a) will be attained when b= x(,) and a = x(y).

Therefore, b= x(,) and a = x(1) give us the MLE.
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Maximum Likelihood

@ Question 3: We want to fit a regression model where Y|X = x ~ U([0, eWTX]) for some
w € R?. Given i.i.d. data points (X1, Y1),...,(Xn, Ya) € R? xR, give a convex
optimization problem that finds the MLE for w.
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Maximum Likelihood
Solution: The likelihood L is given by
L(W;le}/ly---vxny)/n): =1
Taking logs we get
n n
i=1 i=1
if yi <exp(wTx;) for all i, or —oo otherwise. Thus we obtain the linear program
n
minimize w' (Zx;)

subject to log(y;) <w'x; fori=1,....n
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Maximum Likelihood

@ Question 4: Suppose we have input-output pairs {(x1,y1),..., (Xn, ¥n)}, where x; € RP and
yi€ N={0,1,2,3,...} for i=1,..,n. Our task is to train a Poisson regression to model
the data. Assume the linear coefficients in the model is w.

© Suppose a test point x* is orthogonal to the space generated by the training data. What is
the prediction {> regularized Poisson GLM make on the test point?
@ Will the solution of the parameters w still be sparse when we use {; regularization?
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Maximum Likelihood

@ Suppose a test point x* is orthogonal to the space generated by the training data. What is
the prediction {, regularized Poisson GLM make on the test point?

Solution: {, penalized Poisson regression objective:

n

Jw)==3_[yiwxi—exp (w'xi) ~log (y;))] +Allwlf3
i=1

From Representer Theorem, the minimizer w = Z?:l o;x;. The prediction is
n
exp(w ! x*) = exp(Z oc;x,-Tx*) =exp(0)=1

i=1
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Maximum Likelihood

@ Will the solution of the parameters w still be sparse when we use £; regularization?

Solution: Negative log-likelihood of Poisson regression is a convex function. The sublevel
set is a convex set. The level set is the boundary of the sublevel set. When the level set
approaches the diamond (level set of the {1 norm), it is still likely to hit the corner of the
diamond.
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