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Maximum Likelihood
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Maximum Likelihood Estimation

Suppose D= (y1, . . . ,yn) is an i.i.d. sample from some distribution.

Definition
A maximum likelihood estimator (MLE) for θ in the model {p(y ;θ) | θ ∈Θ} is

θ̂ ∈ argmax
θ∈Θ

logp(D, θ̂)

= argmax
θ∈Θ

n∑
i=1

logp(yi ;θ).
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Maximum Likelihood Estimation

Finding the MLE is an optimization problem.

For some model families, calculus gives a closed form for the MLE.

Can also use numerical methods we know (e.g. SGD).
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Estimating Distributions, Overfitting, and Hypothesis Spaces

Just as in classification and regression, MLE can overfit!
Example Probability Models:

F = {Poisson distributions}.
F = {Negative binomial distributions}.
F ={Histogram with 10 bins}
F ={Histogram with bin for every y ∈ Y} [will likely overfit for continuous data]

How to judge which model works the best?
Choose the model with the highest likelihood on validation set.
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Conditional Probability Models
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Bernoulli Regression

Setting: X= Rd , Y= {0,1}
For each x , we predict a distribution on Y= {0,1}.
We specify the Bernoulli parameter θ= p(y = 1).
We use transfer function to map a predictor (e.g.Linear Predictor) to {0,1}, referring to
the Bernoulli distribution Bernoulli(θ).
Linear Probabilistic Classifier:

x︸︷︷︸
∈Rd

7→ wT x︸︷︷︸
∈R

7→ f (wT x)︸ ︷︷ ︸
∈[0,1]

= θ,

wT x : the linear predictor; f : the transfer function.
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Bernoulli Regression: MLE

It will be convenient to write likelihood of w for (x ,y) as this as

p(y | x ;w) =
[
f (wT x)

]y [
1− f (wT x)

]1−y
.

With data D : (x1,y1), . . . ,(xn,yn) ∈ Rd × {0,1}, we have log-likelihood:

logp(D;w) =

n∑
i=1

(
yi log f (w

T xi )+(1− yi ) log
[
1− f (wT xi )

])
,
which is the negative of the negative log-likelihood objective J(w).
Optimization: Week 2. (Note: J(w) is convex.)
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Poisson Regression

Input space X= Rd , Output space Y= {0,1,2,3,4, . . . }, Action space A= (0,∞).
In Poisson regression, prediction functions produce a Poisson distribution with mean
parameter λ ∈ (0,∞).

In Poisson regression, x enters linearly: x 7→ wT x︸︷︷︸
R

7→ λ= f (wT x)︸ ︷︷ ︸
(0,∞)

.

standard transfer function: f (wT x) = exp
(
wT x

)
.
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Poisson Regression: MLE

The likelihood for w on the full dataset D is

logp(D;w) =

n∑
i=1

[
yiw

T xi − exp
(
wT xi

)
− log (yi !)

]
To get MLE, need to maximize

J(w) = logp(D;w)

over w ∈ Rd .

No closed form for optimum, but it’s concave, so easy to optimize.
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Gaussian Linear Regression

Input space X= Rd , Output space Y= R, Action space A= R.
In Gaussian regression, prediction functions produce a distribution N(µ,σ2).

Assume σ2 is known.
We predict µ ∈ R.

In Gaussian linear regression, x enters linearly: x 7→ wT x︸︷︷︸
R

7→ µ= f (wT x)︸ ︷︷ ︸
R

.

Identity transfer function: f (wT x) = wT x .
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Gaussian Regression: MLE

We assume data as i.i.d. samples.
The conditional log-likelihood is:

n∑
i=1

logp(yi | xi ;w) = constant+
n∑

i=1

(
−
(yi −wT xi )

2

2σ2

)
The MLE is

w∗ =argmin
w∈Rd

n∑
i=1

(yi −wT xi )
2

This is exactly the objective function for least squares.
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Multinomial Logistic Regression

Setting: X= Rd , Y= {1, . . . ,k}

Represent categorical distribution by probability vector θ= (θ1, . . . ,θk) ∈ Rk :∑k
i=1θi = 1 and θi > 0 for i = 1, . . . ,k (i.e. θ represents a distribution)

We follow the same steps as binominal logistic regression, except for the transfer function.
Softmax Transfer Function:

(s1, . . . ,sk) 7→ θ=

(
es1∑k
i=1 e

si
, . . . ,

esk∑k
i=1 e

si

)
.
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Review Questions
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Maximum Likelihood

Question 1: Suppose we have samples x1, . . . ,xn i.i.d drawn from Bernoulli(p). Find the
maximum likelihood estimator of p.

Haau-Sing Li (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 March 10, 2019 16 / 26



Maximum Likelihood

Solution:
The likelihood is:

L(p) = Πn
i=1p

xi (1−p)(1−xi ).

The log-likelihood is:

`(p) = logp
n∑

i=1

xi + log(1−p)
n∑

i=1

(1− xi ).

Set the derivative of log-likelihood w.r.t. p to zero:

∂`(p)

∂p
=

∑n
i=1 xi
p

−

∑n
i=1(1− xi )

1−p
= 0.
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Maximum Likelihood

Solving the equation above, we have:

p =
1
n

n∑
i=1

xi .

The second derivative of log-likelihood w.r.t. p is

∂2`(p)

∂p2 =
−
∑n

i=1 xi
p2 −

∑n
i=1(1− xi )

(1−p)2
.

Since p ∈ [0,1] and xi ∈ {0,1}, the second derivative is always negative. The log-likelihood
is concave. Therefore, p = 1

n

∑n
i=1 xi gives us the MLE.

A twice differentiable function of one variable is concave on an interval if and only if its
second derivative is non-positive there!
Why cannot we have the same closed form solution for logistic regression?
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Maximum Likelihood

Question 2: Suppose we have samples x1, . . . ,xn i.i.d drawn from uniform distribution
U(a,b). Find the maximum likelihood estimator of a and b.
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Maximum Likelihood

Solution:
The likelihood is:

L(a,b) = Πn
i=1

(
1

b−a
1[a,b](xi )

)
Let x(1), . . . ,x(n) be the order statistics.
The likelihood is greater than zero if and only a < x(1) and b > x(n).
When a < x(1) and b > x(n), the likelihood is a monotonically decreasing function of (b−a).
And the smallest (b−a) will be attained when b = x(n) and a = x(1).
Therefore, b = x(n) and a = x(1) give us the MLE.
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Maximum Likelihood

Question 3: We want to fit a regression model where Y |X = x ∼ U([0,ew
T x ]) for some

w ∈ Rd . Given i.i.d. data points (X1,Y1), . . . ,(Xn,Yn) ∈ Rd ×R, give a convex
optimization problem that finds the MLE for w .
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Maximum Likelihood

Solution: The likelihood L is given by

L(w ;x1,y1, . . . ,xn,yn) = Π
n
i=1

1(yi 6 ew
T xi )

ewT xi
.

Taking logs we get

−

n∑
i=1

wT xi =−wT

(
n∑

i=1

xi

)
if yi 6 exp(wT xi ) for all i , or −∞ otherwise. Thus we obtain the linear program

minimize wT

(
n∑

i=1

xi

)
subject to log(yi )6 wT xi for i = 1, . . . ,n.
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Maximum Likelihood

Question 4: Suppose we have input-output pairs {(x1,y1), . . . ,(xn,yn)}, where xi ∈ Rp and
yi ∈ N = {0,1,2,3, . . . } for i = 1, ..,n. Our task is to train a Poisson regression to model
the data. Assume the linear coefficients in the model is w .

1 Suppose a test point x∗ is orthogonal to the space generated by the training data. What is
the prediction `2 regularized Poisson GLM make on the test point?

2 Will the solution of the parameters ŵ still be sparse when we use `1 regularization?

Haau-Sing Li (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 March 10, 2019 23 / 26



Maximum Likelihood

Suppose a test point x∗ is orthogonal to the space generated by the training data. What is
the prediction `2 regularized Poisson GLM make on the test point?
Solution: `2 penalized Poisson regression objective:

Ĵ(w) = −

n∑
i=1

[
yiw

T xi − exp
(
wT xi

)
− log (yi !)

]
+λ‖w‖22

From Representer Theorem, the minimizer ŵ =
∑n

i=1αixi . The prediction is

exp(wT x∗) = exp(
n∑

i=1

αix
T
i x∗) = exp(0) = 1
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Maximum Likelihood

Will the solution of the parameters ŵ still be sparse when we use `1 regularization?
Solution: Negative log-likelihood of Poisson regression is a convex function. The sublevel
set is a convex set. The level set is the boundary of the sublevel set. When the level set
approaches the diamond (level set of the `1 norm), it is still likely to hit the corner of the
diamond.
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