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Recitation 5 Initial Question

Intro Question

Question

Consider applying linear regression to the data set on the left, and an SVM
to the data set on the right. What is the issue? Can it be improved?
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Recitation 5 Initial Question

Intro Solution

Regression Solution

We want to allow for non-linear regression functions, but we would like to
reuse the same fitting procedures we have already developed. To do this
we will expand our feature set by adding non-linear functions of old
features. We change our features from (1, x) to (1, x , x2). That is

X =


1 −1
1 −.7
...

...
1 1

 =⇒ Φ =


1 −1 (−1)2

1 −.7 (−.7)2

...
...

...
1 1 12

 .
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Recitation 5 Initial Question

Intro Solution

Regression Solution

Using features (1, x , x2) and w = (−.1, 0, 1) gives us
fw (x) = −.1 + 0x + 1x2 = x2 − .1. Our prediction function is quadratic
but we obtained it through standard linear methods.

y

x
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Recitation 5 Initial Question

Intro Solution

SVM Solution

For the SVM we expand our feature vector from (1, x1, x2) to
(1, x1, x2, x1x2, x

2
1 , x

2
2 ). Using w = (−1.875, 2.5,−2.5, 0, 1, 1) gives

−1.875 + 2.5x1 − 2.5x2 + x2
1 + x2

2 = (x1 + 1.25)2 + (x2 − 1.25)2 − 5 = 0 as
our decision boundary.

x2

x1
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Recitation 5 Kernels

Feature Mapping

In both cases, we find out that we are not able to construct accurate
linear models on the original input space X .

We heuristically form feature map ϕ(x) : X 7→ Z that maps an
input x ∈ X from the input space X to a feature space Z.

For ridge regression, ϕ(1, x) = [1, x , x2].
For SVM, ϕ(1, x1, x2) = [1, x1, x2, x1x2, x

2
1 , x

2
2 ].

We then apply ridge regression / SVM on the feature space Z.

Question

While we obtain stronger representation power using the feature map
ϕ(x), it comes with a cost. How to quantify this cost?
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Recitation 5 Kernels

Cost of Adding Features

Question

Suppose we begin with d-dimensional inputs x = (x1, . . . , xd). We add all
monomial features up to degree M. More precisely, all terms of the form
xp1

1 · · · x
pd
d where pi ≥ 0 and p1 + · · ·+ pd ≤ M. How many features will

we have in total?

In our SVM example, we begin with d = 2 dimensions x = (x1, x2).

Our feature is z = (1, x1, x2, x1x2, x
2
1 , x

2
2 ).

Each monomial feature zi can be expressed using xp1
1 xp2

2 .

For instance, 1 = x0
1x

0
2 so p1 = p2 = 0 and x2

1 = x2
1x

0
2 so

p1 = 2, p2 = 0.

Important observation: both d and M determines the total number of
features. d controls how many dimensions we start with and M
controls how “complex” our resulting features are.
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Recitation 5 Kernels

Cost of Adding Features

Question

Suppose we begin with d-dimensional inputs x = (x1, . . . , xd). We add all
monomial features up to degree M. More precisely, all terms of the form
xp1

1 · · · x
pd
d where pi ≥ 0 and p1 + · · ·+ pd ≤ M. How many features will

we have in total?

Solution

There will be
(M+d

M

)
terms total. If M is fixed and we let d grow, this

behaves like dM

M! . For example, if d = 40 and M = 8 we get(40+8
8

)
= 377348994. If we are training or predicting with a linear model

wT x , this product now takes O(dM) operations to evaluate.
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Recitation 5 Kernels

Cost of Adding Features

If we stick with polynomial features up to order M, it’s takes
exponential time O(dM) to compute all features.

Can we avoid this computational cost while still building ridge
regression / SVM models that takes all polynomial features into
account?
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Recitation 5 Kernels

The Kernel Function

Definition (Kernel)

Given a feautre map ϕ(x) : X 7→ Z, the kernel function corresponding to
ϕ(x) is

k(x , x
′
) = 〈ϕ(x), ϕ(x

′
)〉

where 〈·, ·〉 is an inner product operator.

So a kernel function computes the inner product of applying the
feature map ϕ(x) for two inputs x , x ′ ∈ X .

Why kernel can help us avoid computational cost?

How can we integrate kernel into ridge regression / SVM?
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Recitation 5 Kernels

Efficiency of Kernel

Consider the polynomial kernel k(x , y) = 〈ϕ(x), ϕ(y)〉 = (1 + xT y)M

where x , y ∈ Rd . For example, if M = 2 we have

(1 + xT y)2 = 1 + 2xT y + xT yxT y

= 1 + 2
∑d

i=1 xiyi +
∑d

i ,j=1 xiyixjyj .

Option 1: First explicitly evaluate ϕ(x) and ϕ(y), and then compute
〈ϕ(x), ϕ(y)〉.

ϕ(x) =
(1,
√

2x1, . . . ,
√

2xd , x
2
1 , . . . , x

2
d ,
√

2x1x2,
√

2x1x3, . . . ,
√

2xd−1xd)

Takes O(dM) times to evaluate ϕ(x) and ϕ(y).

Takes another O(dM) times to compute the inner product.

Time complexity is O(dM).
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Recitation 5 Kernels

Efficiency of Kernel

Consider the polynomial kernel k(x , y) = 〈ϕ(x), ϕ(y)〉 = (1 + xT y)M

where x , y ∈ Rd . This computes the inner product of all monomials up to
degree M in time O(d). For example, if M = 2 we have

(1 + xT y)2 = 1 + 2xT y + xT yxT y

= 1 + 2
∑d

i=1 xiyi +
∑d

i ,j=1 xiyixjyj .

Option 2: First calculate 1 + xT y , then calculate (1 + xT y)M .

Takes O(d) time to evaluate 1 + xT y .

Takes O(1) time to calculate (1 + xT y)M

Time complexity is O(d)
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Recitation 5 Kernels

Kernel for SVM

Directly calculating the kernel is much more computationally efficient
than explicitly expressing ϕ(x) and evaluating the inner product.

But how can we make use of the kernel to support ridge regression /
SVM?

To answer this question, we need first to understand the Representer
Theorem.

“In sovjet rashiya, machine vector supports you.”
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Recitation 5 Kernels

Representer Theorem (Baby Version)

Theorem ((Baby) Representer Theorem)

Suppose you have a loss function of the form

J(w) = L(wTϕ(x1), . . . ,wTϕ(xn)) + R(‖w‖2)

where

xi ∈ Rd ,w ∈ RD , ϕ(x) : Rd 7→ RD .

L : Rn → R is an arbitrary function (loss term).

R : R≥0 → R is increasing (regularization term).

Assume J has at least one minimizer. Then J has a minimizer w∗ of the
form w∗ =

∑n
i=1 αiϕ(xi ) for some α ∈ Rn. If R is strictly increasing, then

all minimizers have this form.
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Recitation 5 Kernels

Representer Theorem: Proof

Proof.

Let w∗ ∈ RD and let S = Span(ϕ(x1), . . . , ϕ(xn)).

w∗ =
∑n

i=1 αiϕ(xi ) indicates that w∗ lies in S .

Let’s first suppose w∗ does not lie in S . Then we can write
w∗ = u + v where u ∈ S and v ∈ S⊥. Here u is the orthogonal
projection of w∗ onto S , and S⊥ is the subspace of all vectors
orthogonal to S .

Then (w∗)Tϕ(xi ) = (u + v)Tϕ(xi ) = uTϕ(xi ) + vTϕ(xi ) = uTϕ(xi ).
So the prediction only depends on uTϕ(xi ).

But ‖w∗‖2
2 = ‖u + v‖2

2 = ‖u‖2
2 +‖v‖2

2 + 2uT v = ‖u‖2
2 +‖v‖2

2 ≥ ‖u‖2
2.

Thus R(‖w∗‖2) ≥ R(‖u‖2) showing J(w∗) ≥ J(u).

Above we showed that ‖u + v‖2
2 = ‖u‖2

2 + ‖v‖2
2 when uT v = 0. This

is called the Pythagorean theorem.
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Recitation 5 Kernels

Representer Theorem: Meaning

If your loss function only depends on w via its inner products with the
inputs, and the regularization is an increasing function of the `2 norm,
then we can write w∗ as a linear combination of the training data.

This applies to ridge regression and SVM.

Question

Suppose you have n = 100 samples, d = 40 features, and M = 8 degree
monomial terms giving 377348994 features. This implies w ∈ R377348994

for ridge regression. What does the representer theorem say?

Solution

As y ∈ Rn varies, the solution w must lie in a 100-dimensional subspace of
R377348994.
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Recitation 5 Kernels

Recap

We want ridge regression / SVM to have the capacity of
incorporating non-linear features.

We can achieve this by designing feature map ϕ(x), but explicit
evaluating ϕ(x) is sometimes computationally infeasible.

We found that while explicit evaluating ϕ(x) is expansive, evaluating
its inner product k(x , x ′) = 〈ϕ(x), ϕ(x ′)〉 on two data points are fairly
cheap.

Representer Theorem tells us that with some reasonable assumptions,
the optimal set of parameters w∗ for ridge regression / SVM’s loss
function can be expressed as w∗ =

∑n
i=1 αiϕ(xi ).

Now let’s plug in the Representer Theorem into the formulation of
ridge regression / SVM.
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Recitation 5 Kernels

Representer Theorem: Ridge Regression

By adding features to ridge regression we had

J(w̃) =
1

n

n∑
i=1

(w̃Tϕ(xi )− yi )
2 + λ‖w̃‖2

2

=
1

n
‖Φw̃ − y‖2

2 + λw̃T w̃ ,

where Φ ∈ Rn×D is the matrix with ϕ(xi )
T as its ith row.

Representer Theorem applies giving w̃ =
∑n

j=1 αjϕ(xj) = ΦTα.

Plugging in gives

J(α) =
1

n

∥∥∥ΦΦTα− y
∥∥∥2

2
+ λαTΦΦTα.
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Recitation 5 Kernels

Representer Theorem: Ridge Regression

Let K ∈ Rn×n be given by K = ΦΦT . This is called the Gram
Matrix and satisfies Kij = k(xi , xj) = ϕ(xi )

Tϕ(xj):

K =

ϕ(x1)Tϕ(x1) · · · ϕ(x1)Tϕ(xn)
...

. . .
...

ϕ(xn)Tϕ(x1) · · · ϕ(xn)Tϕ(xn)

 .

We can write ridge regression in the kernelized form by turning

J(α) =
1

n

∥∥∥ΦΦTα− y
∥∥∥2

2
+ λαTΦΦTα.

into

J(α) =
1

n
‖Kα− y‖2

2 + λαTKα.

Can derive the solution algebraically (see Homework 4).

Prediction function is fα(x) = (w∗)Tϕ(x) =
∑n

i=1 αik(xi , x).
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Recitation 5 Kernels

Representer Theorem: Ridge Regression

Remarks

With Representer Theorem, we can re-parameterize our prediction
function from fw (x) = wTϕ(x) to fα(x) =

∑n
i=1 αik(xi , x).

The feature representation ϕ(x) only appears in inner product form in
both the loss function and the prediction function.

Therefore, we just need to evaluate the kernel function k(x , y) and
never need to explicitly evaluate ϕ(x).

We know that it’s much easier to compute the kernel k(x , y).

The kernel k(x , y), to some extent, represents a similarity score
between two data points.
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Recitation 5 Kernels

Representer Theorem: Primal SVM

For a general linear model, the same derivation above shows

J(w) = L(Φw) + R(‖w‖2)

becomes
J(α) = L(Kα) + R(

√
αTKα).

Here ϕ(xi )
Tw became (Kα)i .

The primal SVM (bias in features) has loss function

J(w) =
c

n

n∑
i=1

(1− yi (ϕ(xi )
Tw))+ + ‖w‖2

2.

This is kernelized to

J(α) =
c

n

n∑
i=1

(1− yi (Kα)i )+ + αTKα.

Positive decision made if (w∗)Tϕ(x) =
∑n

i=1 αik(xi , x) > 0.
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Recitation 5 Kernels

Dual SVM

The dual SVM problem (with features) is given by

maximizeα

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjϕ(xi )
Tϕ(xj)

subject to
n∑

i=1

αiyi = 0

αi ∈
[
0,

c

n

]
for i = 1, . . . , n.

We can immediately kernelize (no representer theorem needed) by
replacing ϕ(xi )

Tϕ(xj) = k(xi , xj).

Recall that we were able to derive the conclusion of the representer
theorem using strong duality for SVMs.
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Recitation 5 Kernels

Mercer’s Theorem

Not all function f (x , y) are valid kernels. Why?

k(x , y) = ϕ(x)ϕ(y)

How can we know if k(x , y) is a valid kernel or not?

Theorem (Mercer’s Theorem)

Fix a kernel k : X × X → R. There is a Hilbert space H and a feature
map ϕ : X → H such that k(x , y) = 〈ϕ(x), ϕ(y)〉H if and only if for any
x1, . . . , xn ∈ X the associated matrix K is positive semi-definite:

K =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 .

Such a kernel k is called positive semi-definite.
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Recitation 5 Kernels

Positive Semi-Definite

Definition (Positive Semi-Definite)

A matrix A ∈ Rn×n is positive semi-definite if it is symmetric and

xTAx ≥ 0

for all x ∈ Rn.

Equivalent to saying the matrix is symmetric with non-negative
eigenvalues.
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Recitation 5 Kernels

Valid Kernels

In plain English, a function k(x , y) is a valid kernel iff:

It’s symmetric, i.e. f (x , y) = f (y , x).

The Gram Matrix K is positive semi-definitive.
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Recitation 5 Kernels

Finding Your Own Kernels

Let k1, k2 : X × X → R be positive semi-definite kernels. Then so are the
following:

k3(w , x) = k1(w , x) + k2(w , x)

k4(w , x) = αk1(w , x) for α ≥ 0

k5(w , x) = f (w)f (x) for any function f : X → R
k6(w , x) = k1(w , x)k2(w , x)
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Recitation 5 Infinite Dimensional Spaces

RBF Kernel

As we saw last time, the most frequently used kernel is the Radial
Basis Function (RBF) kernel

k(w , x) = exp

(
−‖w − x‖2

2

2σ2

)
.

Is there a corresponding feature map ϕ : Rd → RD so that
k(w , x) = ϕ(w)Tϕ(x)?

Unfortunately there is no finite D that will work.

Why? Think about Taylor Series for the exponential function. See
this link for details.
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Recitation 5 Infinite Dimensional Spaces

RBF Kernel

k(w , x) = exp

(
−‖w − x‖2

2

2σ2

)
.

2d RBF kernel looks like the following.

Let’s say we fix w . The k(w , x) is high when x is very close to w .
The value decays as x is moving away from w .

σ controls the spread of the kernel. The higher σ is the wider / flatter
the landscape is for k(w , x).
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Recitation 5 Understanding RBF Kernels

Representer Theorem for RBF Kernels

As we saw earlier for ridge regression and SVM classification, the
decision function has the form fα(x) =

∑n
i=1 αik(xi , x).

For ridge regression, this means that using the RBF kernel amounts to
approximating our data by a linear combination of Gaussian bumps.

For SVM classification, each k(xi , x) = exp
(
−‖xi − x‖2

2/(2σ2)
)

represents a exponentially decaying distance between xi and x . Thus
our decisions depend on our proximities to data points.

DS-GA 1003 Machine Learning (Spring 2021) Recitation 5 March 2, 2021 30 / 36



Recitation 5 Understanding RBF Kernels

RBF Regression

Below we use 10 uniformly spaced x-values between −2 and 2, with
yi = x2

i . We fit kernelized ridge regression with the RBF kernel using
σ = 1 and λ = .1.

Each green curve is g(x) = αik(xi , x). The predicted function is
drawn in blue.

As you might expect, extrapolating outside of [−2, 2] can have poor
results.

People will often normalize the RBF kernel (see Hastie, Tibshirani,
Friedman p. 213).
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Recitation 5 Understanding RBF Kernels

RBF Regression

y

x
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Recitation 5 Understanding RBF Kernels

RBF Classification

Next we show 4 points placed on the corners of a square with positive
and negative points on each diagonal.

DS-GA 1003 Machine Learning (Spring 2021) Recitation 5 March 2, 2021 33 / 36



Recitation 5 Understanding RBF Kernels

RBF Classification

Contours of f (x) = k(x1, x) + k(x2, x) where x1, x2 are positive examples,
and σ = 1.

x2

x1

DS-GA 1003 Machine Learning (Spring 2021) Recitation 5 March 2, 2021 34 / 36



Recitation 5 Understanding RBF Kernels

RBF Classification

Contours of f (x) = k(x1, x) + k(x2, x)− k(x3, x)− k(x4, x) where x1, x2

are positive examples, and σ = 1.

x2

x1
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