Recitation 4

Geometric Derivation of SVMs and Complementary Slackness

DS-GA 1003 Machine Learning

Spring 2021

February 24, 2021

Intro Question

Question

You have been given a data set (x_i, y_i) for i = 1, ..., n where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$. Assume $w \in \mathbb{R}^d$ and $a \in \mathbb{R}$.

- Suppose $y_i(w^T x_i + a) > 0$ for all *i*. Use a picture to explain what this means when d = 2.
- Similar Fix M > 0. Suppose $y_i(w^T x_i + a) \ge M$ for all *i*. Use a picture to explain what this means when d = 2.

Component of v_1 , v_2 in the direction w

э

Level Surfaces of $f(v) = w^T v$ with $||w||_2 = 1$

Sides of the Hyperplane $w^T v = 15$

DS-GA 1003 Machine Learning (Spring 2021)

- 34

Signed Distance from x_1, x_2 to Hyperplane $w^T v = 20$

DS-GA 1003 Machine Learning (Spring 2021)

February 24, 2021 6 / 30

Linearly Separable

Definition

We say (x_i, y_i) for i = 1, ..., n are *linearly separable* if there is a $w \in \mathbb{R}^d$ and $a \in \mathbb{R}$ such that $y_i(w^T x_i + a) > 0$ for all i. The set $\{v \in \mathbb{R}^d \mid w^T v + a = 0\}$ is called a *separating hyperplane*.

Support Vector Machines

Linearly Separable Data

DS-GA 1003 Machine Learning (Spring 2021)

February 24, 2021 8/30

Many Separating Hyperplanes Exist

Maximum Margin Separating Hyperplane

Soft Margin SVM (unlabeled points have $\xi_i = 0$)

Questions

Questions

- If your data is linearly separable, which SVM (hard margin or soft margin) would you use?
- Explain geometrically what the following optimization problem computes:

$$\begin{array}{ll} \text{minimize}_{w,a,\xi} & \frac{1}{n} \sum_{i=1}^{n} \xi_i \\ \text{subject to} & y_i (w^T x_i + a) \ge 1 - \xi_i \quad \text{for all } i \\ \|w\|_2^2 \le r^2 \\ \xi_i \ge 0 \quad \text{for all } i. \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Optimize Over Cases Where Margin Is At Least 1/r

Overfitting: Tight Margin With No Misclassifications

Training Error But Large Margin

SVM Review : Primal and Dual Formulations

3

A D N A B N A B N A B N

The SVM Dual Problem

• We found the SVM dual problem can be written as::

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

• Given solution α^* to the dual problem, primal solution is $w^* = \sum_{i=1}^{n} \alpha_i^* y_i x_i$.

Note α^{*}_i ∈ [0, ^c/_n]. So c controls max weight on each example (Robustness!).

Insights from Complementary Slackness: Margin and Support Vectors

- ∢ 🗗 ▶

The Margin and Some Terminology

- For notational convenience, define $f^*(x) = x^T w^* + b^*$.
- Margin $yf^*(x)$

- Incorrect classification: $yf^*(x) \leq 0$.
- Margin error: $yf^*(x) < 1$.
- "On the margin": $yf^{*}(x) = 1$.
- "Good side of the margin": $yf^*(x) > 1$.

Support Vectors and The Margin

- Recall "slack variable" $\xi^* = max(0, 1 y_i f^*(x_i))$ is the hinge loss on (x_i, y_i) .
- Suppose $\xi^* = 0$,
- Then $y_i(f^*(x_i)) \geq 1$
 - ${\scriptstyle \bullet}$ "on the margin" (=1) or
 - ${\scriptstyle \bullet }$ "on the good side" (> 1)

< □ > < □ > < □ > < □ > < □ > < □ >

Complementary Slackness Conditions

• Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leq 0$
α_i	$\left(\left(1-y_if(x_i)\right)-\xi_i\right)\leq 0$

- Recall first order condition $\nabla_{\xi_i} L = 0$ gave us $\lambda_i^* = \frac{c}{n} \alpha_i^*$
- By strong duality, we must have complementary slackness:

$$\alpha_i^* (1 - y_i f^*(x_i) - \xi_i^*) = 0$$
$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$

Consequences of Complementary Slackness

• By strong duality, we must have complementary slackness:

$$\alpha_i^* (1 - y_i f^*(x_i) - \xi_i^*) = 0$$
$$\left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$

if y_if*(x_i) > 1, then the margin loss ξ_i^{*} = 0 and we get α_i^{*} = 0
if y_if*(x_i) < 1, then the margin loss ξ_i^{*} > 0, so α_i^{*} = c/n
if α_i^{*} = 0, then ξ_i^{*} = 0, which implies no loss, so y_if*(x_i) ≥ 1
if α_i^{*} ∈ (0, c/n), then ξ_i^{*} = 0, which implies 1 - y_if*(x_i) = 0

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Complementary Slackness Results: Summary

$$\alpha_i^* = 0 \implies y_i f^*(x_i) \ge 1$$

$$\alpha_i^* \in \left(0, \frac{c}{n}\right) \implies y_i f^*(x_i) = 1$$

$$\alpha_i^* = \frac{c}{n} \implies y_i f^*(x_i) \le 1$$

$$y_i f^*(x_i) < 1 \implies \alpha_i^* = \frac{c}{n}$$
$$y_i f^*(x_i) = 1 \implies \alpha_i^* \in \left[0, \frac{c}{n}\right]$$
$$y_i f^*(x_i) > 1 \implies \alpha_i^* = 0$$

DS-GA 1003 Machine Learning (Spring 2021)

February 24, 2021 23 / 30

3

< □ > < 同 > < 回 > < 回 > < 回 >

Support Vectors

• if α_i^* is a solution to the dual problem, then primal solution is

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

with $\alpha_i^* \in \left[0, \frac{c}{n}\right]$

- The x_i 's corresponding to $\alpha_i^* > 0$ are called **support vectors.**
- Few margin errors or "on the margin" examples \implies sparsity in input examples.

< □ > < □ > < □ > < □ > < □ > < □ >

Complementary Slackness to get *b**

э

A D N A B N A B N A B N

The Bias Term: **b**

• For our SVM primal, the complementary slackness conditions are:

$$\alpha_i^* (1 - y_i [x_i^T w^* + b] - \xi_i^*) = 0$$
⁽¹⁾

$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0 \tag{2}$$

- Suppose there's an i such that $\alpha_i^* \in \left(0, \frac{c}{n}\right)$
- (2) implies $\xi_i^* = 0$

• (1) implies

$$y_i[x_i^T w^* + b^*] = 1$$
$$\iff x_i^T w^* + b^* = y_i(\text{use } y_i \in \{-1, 1\})$$
$$\iff b^* = y_i - x_i^T w^*$$

< □ > < □ > < □ > < □ > < □ > < □ >

The Bias Term: **b**

• The optimal b is,

$$b^* = y_i - x_i^T w^*$$

- We get the same b^* for any choice of i with $\alpha_i^* \in (0, \frac{c}{n})$
 - With exact calculations
- With numerical error, more robust to average over all eligible *i* s:

$$b^* = mean\left\{y_i - x_i^T w^* | \alpha_i^* \in \left(0, \frac{c}{n}
ight)
ight\}$$

If there are no α^{*}_i ∈ (0, ^c/_n) ?
 Then we have a degenerate SVM training problem¹ - (w^{*} = 0)

¹See Rifkin et al.'s A Note on Support Vector Machine Degeneracy, an MIT AI Lab Technical Report

DS-GA 1003 Machine Learning (Spring 2021

Teaser for Kernelization

2

< □ > < □ > < □ > < □ > < □ >

Dual Problem: Dependence on x through inner products

• SVM Dual Problem:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

- Note that all dependence on inputs x_i and x_j is through their inner product: (x_j, x_i) = x_j^Tx_i.
- We can replace $x_i^T x_i$ by any other inner product...
- This is a "kernelized" objective function.

References

• DS-GA 1003 Machine Learning Spring 2019

3

< □ > < 同 > < 回 > < 回 > < 回 >