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Recitation 4 Initial Question

Intro Question

Question

You have been given a data set (xi , yi ) for i = 1, . . . , n where xi ∈ Rd and
yi ∈ {−1, 1}. Assume w ∈ Rd and a ∈ R.

1 Suppose yi (w
T xi + a) > 0 for all i . Use a picture to explain what this

means when d = 2.

2 Fix M > 0. Suppose yi (w
T xi + a) ≥ M for all i . Use a picture to

explain what this means when d = 2.
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Recitation 4 Support Vector Machines

Component of v1, v2 in the direction w

wT v1
‖w‖2

wT v2
‖w‖2

w

v1

v2
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Recitation 4 Support Vector Machines

Level Surfaces of f (v) = wTv with ‖w‖2 = 1

wT v = −4

wT v = −3

wT v = −2

wT v = −1

wT v = 0

wT v = 1

wT v = 2

wT v = 3

wT v = 4

wT v = 5

w
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Recitation 4 Support Vector Machines

Sides of the Hyperplane wTv = 15

w

wTv = 15

wTv − 15 > 0

wTv − 15 < 0
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Recitation 4 Support Vector Machines

Signed Distance from x1, x2 to Hyperplane wTv = 20

w

wT x1 − 20

‖w‖2
= − 8√

10

wT x2 − 20

‖w‖2
=

7√
10

x1

x2

‖w‖2 =
√
10

wT v = 20

wT v = 12

wT v = 27
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Recitation 4 Support Vector Machines

Linearly Separable

Definition

We say (xi , yi ) for i = 1, . . . , n are linearly separable if there is a w ∈ Rd

and a ∈ R such that yi (w
T xi + a) > 0 for all i . The set

{v ∈ Rd | wT v + a = 0} is called a separating hyperplane.
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Recitation 4 Support Vector Machines

Linearly Separable Data
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Recitation 4 Support Vector Machines

Many Separating Hyperplanes Exist
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Recitation 4 Support Vector Machines

Maximum Margin Separating Hyperplane

M

M

wT v+a
‖w‖2 = −M

wT v+a
‖w‖2 = 0

wT v+a
‖w‖2 = M
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Recitation 4 Multivariable Calculus

Soft Margin SVM (unlabeled points have ξi = 0)

ξi = 1.5

ξi = 3

ξi = 1.5
ξi = 2
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Recitation 4 Regularization Interpretation

Questions

Questions

1 If your data is linearly separable, which SVM (hard margin or soft
margin) would you use?

2 Explain geometrically what the following optimization problem
computes:

minimizew ,a,ξ
1
n

∑n
i=1 ξi

subject to yi (w
T xi + a) ≥ 1− ξi for all i

‖w‖22 ≤ r2

ξi ≥ 0 for all i .
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Recitation 4 Regularization Interpretation

Optimize Over Cases Where Margin Is At Least 1/r
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Recitation 4 Regularization Interpretation

Overfitting: Tight Margin With No Misclassifications

Almost no margin
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Recitation 4 Regularization Interpretation

Training Error But Large Margin

Large margin
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SVM Review : Primal and Dual Formulations

SVM Review : Primal and Dual Formulations
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SVM Review : Primal and Dual Formulations

The SVM Dual Problem

We found the SVM dual problem can be written as::

sup
α

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,

c

n

]
i = 1, . . . , n.

Given solution α∗ to the dual problem, primal solution is
w∗ =

∑n
i=1 α

∗
i yixi .

Note α∗
i ∈ [0, cn ]. So c controls max weight on each example

(Robustness!).
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Margin and Support Vectors

Insights from Complementary Slackness: Margin and Support
Vectors
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Margin and Support Vectors

The Margin and Some Terminology

For notational convenience, define f ∗(x) = xTw∗ + b∗.

Margin yf ∗(x)

Incorrect classification: yf ∗(x) ≤ 0.

Margin error: yf ∗(x) < 1.

“On the margin”: yf ∗(x) = 1.

“Good side of the margin”: yf ∗(x) > 1.
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Margin and Support Vectors

Support Vectors and The Margin

Recall ”slack variable” ξ∗ = max(0, 1− yi f
∗(xi )) is the hinge loss on

(xi , yi ).

Suppose ξ∗ = 0,

Then yi (f
∗(xi )) ≥ 1

”on the margin” (=1) or
”on the good side” (> 1)
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Complementary Slackness Conditions

Complementary Slackness Conditions

Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier Constraint

λi −ξi ≤ 0

αi ((1− yi f (xi ))− ξi ) ≤ 0

Recall first order condition ∇ξiL = 0 gave us λ∗i = c
n − α∗

i

By strong duality, we must have complementary slackness:

α∗
i (1− yi f

∗(xi )− ξ∗i ) = 0

λ∗i ξ
∗
i =

(c
n
− α∗

i

)
ξ∗i = 0
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Complementary Slackness Conditions

Consequences of Complementary Slackness

By strong duality, we must have complementary slackness:

α∗
i (1− yi f

∗(xi )− ξ∗i ) = 0(c
n
− α∗

i

)
ξ∗i = 0

if yi f
∗(xi ) > 1, then the margin loss ξ∗i = 0 and we get α∗

i = 0

if yi f
∗(xi ) < 1, then the margin loss ξ∗i > 0, so α∗

i = c
n

if α∗
i = 0, then ξ∗i = 0, which implies no loss, so yi f

∗(xi ) ≥ 1

if α∗
i ∈

(
0, cn
)
, then ξ∗i = 0, which implies 1− yi f

∗(xi ) = 0

DS-GA 1003 Machine Learning (Spring 2021) Recitation 4 February 24, 2021 22 / 30



Complementary Slackness Conditions

Complementary Slackness Results: Summary

α∗
i = 0 =⇒ yi f

∗(xi ) ≥ 1

α∗
i ∈

(
0,

c

n

)
=⇒ yi f

∗(xi ) = 1

α∗
i =

c

n
=⇒ yi f

∗(xi ) ≤ 1

yi f
∗(xi ) < 1 =⇒ α∗

i =
c

n

yi f
∗(xi ) = 1 =⇒ α∗

i ∈
[
0,

c

n

]
yi f

∗(xi ) > 1 =⇒ α∗
i = 0
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Complementary Slackness Conditions

Support Vectors

if α∗
i is a solution to the dual problem, then primal solution is

w∗ =
n∑

i=1

α∗
i yixi

with α∗
i ∈

[
0, cn
]

The xi ’s corresponding to α∗
i > 0 are called support vectors.

Few margin errors or ”on the margin” examples =⇒ sparsity in
input examples.
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Complementary Slackness to get b∗

Complementary Slackness to get b∗

DS-GA 1003 Machine Learning (Spring 2021) Recitation 4 February 24, 2021 25 / 30



Complementary Slackness to get b∗

The Bias Term: b

For our SVM primal, the complementary slackness conditions are:

α∗
i (1− yi [x

T
i w∗ + b]− ξ∗i ) = 0 (1)

λ∗i ξ
∗
i =

(c
n
− α∗

i

)
ξ∗i = 0 (2)

Suppose there’s an i such that α∗
i ∈

(
0, cn
)

(2) implies ξ∗i = 0

(1) implies
yi [x

T
i w∗ + b∗] = 1

⇐⇒ xTi w∗ + b∗ = yi (use yi ∈ {−1, 1})
⇐⇒ b∗ = yi − xTi w∗
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Comlementary Slackness to get b∗

The Bias Term: b

The optimal b is,
b∗ = yi − xTi w∗

We get the same b∗ for any choice of i with α∗
i ∈

(
0, cn
)

With exact calculations

With numerical error, more robust to average over all eligible i s:

b∗ = mean
{
yi − xTi w∗|α∗

i ∈
(

0,
c

n

)}
If there are no α∗

i ∈
(
0, cn
)

?

Then we have a degenerate SVM training problem1 - (w∗ = 0)

1See Rifkin et al.’s A Note on Support Vector Machine Degeneracy, an MIT AI Lab
Technical Report
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Teaser for Kernelization

Teaser for Kernelization
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Teaser for Kernelization

Dual Problem: Dependence on x through inner products

SVM Dual Problem:

sup
α

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,

c

n

]
i = 1, . . . , n.

Note that all dependence on inputs xi and xj is through their inner
product: 〈xj , xi 〉 = xTj xi .

We can replace xTj xi by any other inner product...

This is a “kernelized” objective function.
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Teaser for Kernelization References
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