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Recitation 4 Initial Question

Intro Question

Question

You have been given a data set (x;,y;) for i = 1,...,n where x; € R and
yi € {—1,1}. Assume w € R and a € R.

© Suppose y;(w'x; 4+ a) > 0 for all i. Use a picture to explain what this
means when d = 2.

@ Fix M > 0. Suppose y;(w”x; +a) > M for all i. Use a picture to
explain what this means when d = 2.
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Component of vi, v, in the direction w
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Level Surfaces of f(v) = w

Recitation 4

Support Vector Machines

Tv with [|wll; =1

wlv =0
wly =—1
wly=—-2
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Sides of the Hyperplane w'v = 15
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Signed Distance from xi, x» to Hyperplane w’v = 20
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ST G
Linearly Separable

Definition
We say (x;, y;) for i = 1,..., n are linearly separable if there is a w € RY

and a € R such that y;(w”x; +a) > 0 for all i. The set
{veRY | w'lv+a=0}is called a separating hyperplane.
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ST G
Linearly Separable Data
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ST G
Many Separating Hyperplanes Exist
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Maximum Margin Separating Hyperplane
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ST T
Soft Margin SVM (unlabeled points have & = 0)

<
\j

DS-GA 1003 Machine Learning (Spring 2021 Recitation 4 February 24, 2021

11/30



Recitation 4 Regularization Interpretation

Questions

Questions
@ If your data is linearly separable, which SVM (hard margin or soft
margin) would you use?
@ Explain geometrically what the following optimization problem
computes:

minimize,, 5 ¢ %Z,’-’:l &

subject to yilwTxi +a)>1-¢ foralli
IwiB < 2
& >0 forall i

DS-GA 1003 Machine Learning (Spring 2021 Recitation 4 February 24, 2021 12 /30



Recitation 4 Regularization Interpretation

Optimize Over Cases Where Margin Is At Least 1/r
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Regularization Interpretation
Overfitting: Tight Margin With No Misclassifications

-+ Almost no margin

»
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Recitation 4 Regularization Interpretation

Training Error But Large Margin

_|_

Large margin
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SVM Review : Primal and Dual Formulations

SVM Review : Primal and Dual Formulations
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The SVM Dual Problem

@ We found the SVM dual problem can be written as::

sup Za,—fZany,ny X;

@ ij=1

s.t. Za,-y,-:O
i=1
a; € [o,f} i=1,....n
n

@ Given solution a* to the dual problem, primal solution is
w* =31 atyix;.

e Note o] € [0, £]. So ¢ controls max weight on each example
(Robustness!).
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Margin and Support Vectors

Insights from Complementary Slackness: Margin and Support
Vectors
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Margin and Support Vectors

The Margin and Some Terminology
o For notational convenience, define f*(x) = x” w* + b*.

e Margin yf*(x)

Loss(m)

7

Margin m=yf(x)

@ Incorrect classification: yf*(x) < 0.

e Margin error: yf*(x) < 1.

@ "On the margin": yf*(x) =1.

e "Good side of the margin": yf*(x) > 1.
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Support Vectors and The Margin

@ Recall "slack variable” £* = max(0,1 — y;f*(x;)) is the hinge loss on
(xi, yi)-
@ Suppose £* =0,
e Then y;(f*(x;)) > 1
o "on the margin” (=1) or
e "on the good side” (> 1)
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Complementary Slackness Conditions

Complementary Slackness Conditions

@ Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier ‘ Constraint ‘
)\,’ _*Ei < 0
Qj ((1—}4 ( I)) gl)_

@ Recall first order condition V¢, L = 0 gave us A7 = = — o]

@ By strong duality, we must have complementary slackness:
ai (1= yif*(xi) = &) =0
X -k c * *
A& = (; —04,'> & =
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Complementary Slackness Conditions

Consequences of Complementary Slackness

By strong duality, we must have complementary slackness:
ai(1—yif*(x) = &) =

(5 o) =0

if yif*(x;) > 1, then the margin loss £ = 0 and we get of =0
if yif*(xi) < 1, then the margin loss £ >0, so of = ¢

if af =0, then £ =0, which implies no loss, so y;f*(x;) > 1
if o} € (0, ;), then & = 0, which implies 1 — y;f*(x;) =0
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Complementary Slackness Conditions

Complementary Slackness Results: Summary

af =0 = yif*(x)>1
o € (0, %) = yiff(x) =1
c

af = - =  yif'(x) <1
* % c
yif'(xi) <1 = of ==
n

yif'(x)=1 = aj¢€ [O, E]

n

yif'(xi)>1 = «af=0
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Complementary Slackness Conditions

Support Vectors

e if a7 is a solution to the dual problem, then primal solution is

n
w = a; YiXi
i=1

H c
with of € [0, ;]
@ The x;'s corresponding to aj > 0 are called support vectors.
@ Few margin errors or "on the margin” examples = sparsity in
input examples.
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Complementary Slackness to get b*

Complementary Slackness to get b*
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The Bias Term: b

@ For our SVM primal, the complementary slackness conditions are:
ai(1 -yl w* + b — &) =0 (1)

Ng = (S —af) g =0 (2)
@ Suppose there's an i such that o} € (0, €)
@ (2) implies & =0
e (1) implies
yilx w* + b =1
— x'w* 4+ b* = yi(usey; € {-1,1})

—= b =y —x'w
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The Bias Term: b

@ The optimal b is,

@ We get the same b* for any choice of i with af € (0, €)
o With exact calculations

@ With numerical error, more robust to average over all eligible i s:
c
b* = mean {y,- —xw¥|at € (O, —)}
n

o If there are no o] € (0, %) ?

o Then we have a degenerate SVM training problem!® - (w* = 0)

1See Rifkin et al.’s A Note on Support Vector Machine Degeneracy, an MIT Al Lab
Technical Report
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Teaser for Kernelization

Teaser for Kernelization
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Teaser for Kernelization

Dual Problem: Dependence on x through inner products

@ SVM Dual Problem:

n n

§ : 1 § : T

sup ajp — 5 oz,-ozjy,-ijj Xij

« . =
i=1 i,j=1

n
s.t. Za,-y,- =0
i=1

a; € [o,f} i=1,....n
n

@ Note that all dependence on inputs x; and Xx; is through their inner

product: (xj,x;) = x;" x;.
@ We can replace x; x; by any other inner product...

J
@ This is a “kernelized” objective function.
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Teaser for Kernelization References
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