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Concept Check

Concept Check

Explain why feature normalization is important if you are using L1 or
L2 regularization.
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Repeated Features

Repeated Features
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Repeated Features

A Very Simple Model

Suppose we have one feature x1 ∈ R.

Response variable y ∈ R.

Got some data and ran least squares linear regression.

The ERM is
f̂ (x1) = 4x1.

What happens if we get a new feature x2,

but we always have x2 = x1?
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Repeated Features

Duplicate Features

New feature x2 gives no new information.

ERM is still
f̂ (x1, x2) = 4x1.

Now there are some more ERMs:

f̂ (x1, x2) = 2x1 + 2x2

f̂ (x1, x2) = x1 + 3x2

f̂ (x1, x2) = 4x2

What if we introduce `1 or `2 regularization?

DS-GA 1003 Machine Learning (Spring 2021) Recitation 3 Feburary 17, 2021 6 / 32



Repeated Features

Duplicate Features

New feature x2 gives no new information.

ERM is still
f̂ (x1, x2) = 4x1.

Now there are some more ERMs:

f̂ (x1, x2) = 2x1 + 2x2

f̂ (x1, x2) = x1 + 3x2

f̂ (x1, x2) = 4x2

What if we introduce `1 or `2 regularization?

DS-GA 1003 Machine Learning (Spring 2021) Recitation 3 Feburary 17, 2021 6 / 32



Repeated Features

Duplicate Features

New feature x2 gives no new information.

ERM is still
f̂ (x1, x2) = 4x1.

Now there are some more ERMs:

f̂ (x1, x2) = 2x1 + 2x2

f̂ (x1, x2) = x1 + 3x2

f̂ (x1, x2) = 4x2

What if we introduce `1 or `2 regularization?

DS-GA 1003 Machine Learning (Spring 2021) Recitation 3 Feburary 17, 2021 6 / 32



Repeated Features

Duplicate Features: `1 and `2 norms

f̂ (x1, x2) = w1x1 + w2x2 is an ERM iff w1 + w2 = 4.

Consider the `1 and `2 norms of various solutions:

w1 w2 ‖w‖1 ‖w‖22
4 0 4 16

2 2 4 8
1 3 4 10

-1 5 6 26

‖w‖1 doesn’t discriminate, as long as all have same sign

‖w‖22 minimized when weight is spread equally

Picture proof: Level sets of loss are lines of the form w1 + w2 = 4...

DS-GA 1003 Machine Learning (Spring 2021) Recitation 3 Feburary 17, 2021 7 / 32



Repeated Features

Duplicate Features: `1 and `2 norms

f̂ (x1, x2) = w1x1 + w2x2 is an ERM iff w1 + w2 = 4.

Consider the `1 and `2 norms of various solutions:

w1 w2 ‖w‖1 ‖w‖22
4 0 4 16

2 2 4 8
1 3 4 10

-1 5 6 26

‖w‖1 doesn’t discriminate, as long as all have same sign

‖w‖22 minimized when weight is spread equally

Picture proof: Level sets of loss are lines of the form w1 + w2 = 4...

DS-GA 1003 Machine Learning (Spring 2021) Recitation 3 Feburary 17, 2021 7 / 32



Repeated Features

Duplicate Features: `1 and `2 norms

f̂ (x1, x2) = w1x1 + w2x2 is an ERM iff w1 + w2 = 4.

Consider the `1 and `2 norms of various solutions:

w1 w2 ‖w‖1 ‖w‖22
4 0 4 16

2 2 4 8
1 3 4 10

-1 5 6 26

‖w‖1 doesn’t discriminate, as long as all have same sign

‖w‖22 minimized when weight is spread equally

Picture proof: Level sets of loss are lines of the form w1 + w2 = 4...

DS-GA 1003 Machine Learning (Spring 2021) Recitation 3 Feburary 17, 2021 7 / 32



Repeated Features

Equal Features, `2 Constraint

w2

w1

‖w‖2 ≤ 2

w1 + w2 = 2
√
2

w1 + w2 = 2
√
2 + 1.75

w1 + w2 = 2
√
2 + 3.5

w1 + w2 = 2
√
2 + 5.25

w1 + w2 = 2
√
2 + 7

w1 + w2 = 2
√
2 + 8.75

Suppose the line w1 + w2 = 2
√

2 + 3.5 corresponds to the empirical
risk minimizers.

Empirical risk increase as we move away from these parameter settings

Intersection of w1 + w2 = 2
√

2 and the norm ball ‖w‖2 ≤ 2 is ridge
solution.

Note that w1 = w2 at the solution
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Repeated Features

Equal Features, `1 Constraint

w2

w1

‖w‖1 ≤ 2

w1 + w2 = 2

w1 + w2 = 3.75

w1 + w2 = 5.5

w1 + w2 = 7.25

w1 + w2 = 9

w1 + w2 = 10.75

Suppose the line w1 + w2 = 5.5 corresponds to the empirical risk
minimizers.

Intersection of w1 + w2 = 2 and the norm ball ‖w‖1 ≤ 2 is lasso
solution.

Note that the solution set is {(w1,w2) : w1 + w2 = 2,w1,w2 ≥ 0}.
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Linearly Dependent Features

Linearly Dependent Features
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Linearly Dependent Features

Linearly Related Features

Linear prediction functions: f (x) = w1x2 + w2x2

Same setup, now suppose x2 = 2x1.

Then all functions with w1 + 2w2 = k are the same.

give same predictions and have same empirical risk

What function will we select if we do ERM with `1 or `2 constraint?

Compare a solution that just uses w1 to a solution that just uses w2...
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Linearly Dependent Features

Linearly Related Features, `2 Constraint

w2

w1

‖w‖2 ≤ 2

w1 + 2w2 = 10/
√
5

w1 + 2w2 = 10/
√
5 + 3.5

w1 + 2w2 = 10/
√
5 + 7

w1 + 2w2 = 10/
√
5 + 10.5

w1 + 2w2 = 10/
√

5 + 7 corresponds to the empirical risk minimizers.

Intersection of w1 + 2w2 = 10
√

5 and the norm ball ‖w‖2 ≤ 2 is ridge
solution.

At solution, w2 = 2w1.
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Linearly Dependent Features

Linearly Related Features, `1 Constraint

w2

w1

‖w‖1 ≤ 2

w1 + 2w2 = 4

w1 + 2w2 = 8

w1 + 2w2 = 12

w1 + 2w2 = 16

Intersection of w1 + 2w2 = 4 and the norm ball ‖w‖1 ≤ 2 is lasso
solution.

Solution is now a corner of the `1 ball, corresponding to a sparse
solution.
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Linearly Dependent Features

Linearly Dependent Features: Take Away

For identical features

`1 regularization spreads weight arbitrarily (all weights same sign)
`2 regularization spreads weight evenly

Linearly related features

`1 regularization chooses variable with larger scale, 0 weight to others
`2 prefers variables with larger scale – spreads weight proportional to
scale
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Linearly Dependent Features

Empirical Risk for Square Loss and Linear Predictors

Recall our discussion of linear predictors f (x) = wT x and square loss.

Sets of w giving same empirical risk (i.e. level sets) formed ellipsoids
around the ERM.

With x1 and x2 linearly related, XTX has a 0 eigenvalue.

So the level set
{
w | (w − ŵ)T XTX (w − ŵ) = nc

}
is no longer an

ellipsoid.

It’s a degenerate ellipsoid – that’s why level sets were pairs of lines in
this case

KPM Fig. 13.3
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Correlated Features

Correlated Features
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Correlated Features

Correlated Features – Same Scale

Suppose x1 and x2 are highly correlated and the same scale.

This is quite typical in real data, after normalizing data.

Nothing degenerate here, so level sets are ellipsoids.

But, the higher the correlation, the closer to degenerate we get.

That is, ellipsoids keep stretching out, getting closer to two parallel
lines.
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Correlated Features

Correlated Features, `1 Regularization

w2

w1

‖w‖1 ≤ 2

w2

w1

‖w‖1 ≤ 2

Intersection could be anywhere on the top right edge.

Minor perturbations (in data) can drastically change intersection
point – very unstable solution.

Makes division of weight among highly correlated features (of same
scale) seem arbitrary.

If x1 ≈ 2x2, ellipse changes orientation and we hit a corner. (Which
one?)
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The Case Against Sparsity

A Case Against Sparsity

Suppose there’s some unknown value θ ∈ R.

We get 3 noisy observations of θ:

x1, x2, x3 ∼ N (θ, 1) (i.i.d)

What’s a good estimator θ̂ for θ?

Would you prefer θ̂ = x1 or θ̂ = 1
3 (x1 + x2 + x3)?
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The Case Against Sparsity

Estimator Performance Analysis

Exp [x1] = θ and Exp
[
1
3 (x1 + x2 + x3)

]
= θ. So both unbiased.

Var [x1] = 1.

Var
[
1
3 (x1 + x2 + x3)

]
= 1

9 (1 + 1 + 1) = 1
3 .

Average has a smaller variance — the independent errors cancel each
other out.

Similar thing happens in regression with correlated features:

e.g. If 3 features are correlated, we could keep just one of them.
But we can potentially do better by using all 3.
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The Case Against Sparsity

Example with highly correlated features

Model in words:

y is some unknown linear combination of z1 and z2.
But we don’t observe z1 and z2 directly.

We get 3 noisy observations of z1, call them x1, x2, x3.
We get 3 noisy observations of z2, call them x4, x5, x6.

We want to predict y from our noisy observations.

That is, we want an estimator ŷ = f (x1, x2, x3, x4, x5, x6) for
estimating y .

Example from Section 4.2 in Hastie et al’s Statistical Learning with Sparsity.
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That is, we want an estimator ŷ = f (x1, x2, x3, x4, x5, x6) for
estimating y .

Example from Section 4.2 in Hastie et al’s Statistical Learning with Sparsity.

DS-GA 1003 Machine Learning (Spring 2021) Recitation 3 Feburary 17, 2021 21 / 32



The Case Against Sparsity

Example with highly correlated features

Model in words:

y is some unknown linear combination of z1 and z2.
But we don’t observe z1 and z2 directly.

We get 3 noisy observations of z1, call them x1, x2, x3.
We get 3 noisy observations of z2, call them x4, x5, x6.

We want to predict y from our noisy observations.
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The Case Against Sparsity

Example with highly correlated features

Suppose (x , y) generated as follows:

z1, z2 ∼ N (0, 1) (independent)

ε0, ε1, . . . , ε6 ∼ N (0, 1) (independent)

y = 3z1 − 1.5z2 + 2ε0

xj =

{
z1 + εj/5 for j = 1, 2, 3

z2 + εj/5 for j = 4, 5, 6

Generated a sample of ((x1, . . . , x6) , y) pairs of size n = 100.

That is, we want an estimator ŷ = f (x1, x2, x3, x4, x5, x6) that is good
for estimating y .

High feature correlation: Correlations within the groups of x ’s is
around 0.97.

Example from Section 4.2 in Hastie et al’s Statistical Learning with Sparsity.
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The Case Against Sparsity

Example with highly correlated features

Lasso regularization paths:
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Elastic-Net Paths

Lines with the same color correspond to features with essentially the
same information
Distribution of weight among them seems almost arbitrary
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The Case Against Sparsity

Hedge Bets When Variables Highly Correlated

When variables are highly correlated (and same scale – assume we’ve
standardized features),

we want to give them roughly the same weight.

Why?

Let their errors cancel out

How can we get the weight spread more evenly?
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Elastic Net

Elastic Net
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Elastic Net

Elastic Net

The elastic net combines lasso and ridge penalties:

ŵ = arg min
w∈d

1

n

n∑
i=1

{
wT xi − yi

}2
+ λ1‖w‖1 + λ2‖w‖22

We expect correlated random variables to have similar coefficients.
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Elastic Net

Highly Correlated Features, Elastic Net Constraint

w2

w1

.8‖w‖1 + .2‖w‖2
2 ≤ 2

Elastic net solution is closer to w2 = w1 line, despite high correlation.
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Elastic Net

Elastic Net Results on Model
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Elastic-Net Paths

Lasso on left; Elastic net on right.

Ratio of `2 to `1 regularization roughly 2 : 1.
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Elastic Net

Elastic Net - “Sparse Regions”

Suppose design matrix X is orthogonal, so XTX = I , and contours
are circles (and features uncorrelated)

Then OLS solution in green or red regions implies elastic-net
constrained solution will be at corner

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.9
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Extra Pictures

Elastic Net vs Lasso Norm Ball

From Figure 4.2 of Hastie et al’s Statistical Learning with Sparsity.
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Extra Pictures

`1.2 vs Elastic Net

From Hastie et al’s Elements of Statistical Learning.
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Extra Pictures References
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