
DS-GA 1003: Machine Learning

March 12, 2019: Midterm Exam (100 Minutes)

Answer the questions in the spaces provided. If you run out of room for an answer, use the
blank page at the end of the test. Please don’t miss the last questions, on the back of

the last test page.

Name:

NYU NetID:



Question Points Score

1) Bayes Optimal 7

2) Risk Decomposition 6

3) Linear Separability and Loss Functions 6

4) SVM with Slack Variables 9

5) Dependent Features 6

6) RBF Kernel 4

7) `2-norm Penalty 6

Total: 44



1. (7 points) Consider a binary classification problem. For class y = 0, x is sampled
from {1, 2, 3, 4, 5, 6, 7, 8} with equal probability; for class y = 1, x is sampled from
{7, 8, 9, 10} with equal probability. Assume that both classes are equally likely. Let
f ∗ : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} → {0, 1} represent the Bayes prediction function for the
given setting under 0− 1 loss. Find f ∗ and calculate the Bayes risk.
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2. Consider the statistical learning problem for the distribution D on X × Y , where X =
Y = R. A labeled example (x, y) ∈ R2 sampled from D has probability distribution
given by x ∼ N (0, 1) and y|x ∼ N (f ∗(x), .1), where f ∗(x) =

∑5
i=0(i+ 1)xi.

Let Pk denote the set of all polynomials of degree k on R–that is, the set of all functions
of the form f(x) =

∑k
i=0 aix

i for some a1, . . . , ak ∈ R.

Let Dm be a training set (x1, y1), . . . , (xm, ym) ∈ R×R drawn i.i.d. from D. We perform
empirical risk minimization over a hypothesis space H for the square loss. That is, we
try to find f ∈ H minimizing

R̂m(f) =
1

m

m∑
i=1

(f(x)− y)2

(a) (2 points) If we change the hypothesis space H from P3(x) to P4(x) while keeping
the same training set, select ALL of the following that MUST be true:

� Approximation error increases or stays the same.

� Approximation error decreases or stays the same.

� Estimation error increases or stays the same.

� Bayes risk decreases.

(b) (2 points) If we change the hypothesis space H from P5(x) to P6(x) while keeping
the same training set, select ALL of the following that MUST be true:

� Approximation error stays the same.

� Estimation error stays the same.

� Optimization error stays the same.

� Bayes risk stays the same.

(c) (2 points) If we increase the size of the training set m from 1000 to 5000 while
keeping the same hypothesis space P5(x), select ALL of the following that MUST
be true:

� Approximation error stays the same.

� Estimation error decreases or stays the same.

� The variance of R̂m(f) for f(x) = x2 decreases.

� Bayes risk stays the same.

Page 2 of 10



3. Let Dt denote a training set (x1, y1), . . . , (xnt , ynt) ∈ Rd × {−1, 1} and Dv a validation
set (x1, y1), . . . , (xnv , ynv) ∈ Rd × {−1, 1}. The training set Dt is linearly separable.
Define J(θ) = 1

nt

∑
(x,y)∈Dt

`(m), where `(m) is a margin-based loss function, and m is

the margin defined by m = y(θTx).

We have run an iterative optimization algorithm for 100 steps and attained θ̃ as our
approximate minimizer of J(θ).

Denote the training accuracy by α(Dt) = 1
nt

∑
(x,y)∈Dt

1(yθ̃Tx > 0) and the validation

accuracy by α(Dv) = 1
nv

∑
(x,y)∈Dv

1(yθ̃Tx > 0).

(a) Answer the following for the logistic loss `(m) = log(1 + e−m):

i. (1 point) True or False: Achieving 100% training accuracy (α(Dt) =
1) implies that we have achieved a minimizer of the objective function (θ̃ ∈
arg minθ J(θ)).

ii. (1 point) True or False: Achieving 100% validation accuracy (α(Dv) =
1) implies that we have achieved a minimizer of the objective function (θt ∈
arg minθ J(θ)).

(b) Answer the following for the hinge loss `(m) = max(0, 1−m):

i. (1 point) True or False: Achieving 100% training accuracy (α(Dt) =
1) implies that we have achieved a minimizer of the objective function (θ̃ ∈
arg minθ J(θ)).

ii. (1 point) True or False: Achieving a minimizer of the objective function
(θ̃ ∈ arg minθ J(θ)) implies we have achieved training accuracy 100% (α(Dt) =
1).

(c) Answer the following for the perceptron loss `(m) = max(0,−m):

i. (1 point) True or False: Achieving 100% training accuracy (α(Dt) =
1) implies that we have achieved a minimizer of the objective function (θ̃ ∈
arg minθ J(θ)).

ii. (1 point) True or False: Achieving a minimizer of the objective function
(θ̃ ∈ arg minθ J(θ)) implies we have achieved training accuracy 100% (α(Dt) =
1).
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Figure 1: A subset of datapoints from Dm with the decision boundary.

4. Given a dataset Dm = {(z1, y1), . . . , (zm, ym)} ∈ R2×{−1, 1} we solve the optimization
problem given below to obtain w, b which characterizes the hyperplane which classifies
any point z ∈ Rd into one of the classes y = +1 or y = −1 and a number ξi for each
datapoint zi ∈ Dm, referred to as slack.

minimizew,b,ξ ‖w‖22 + C
m

∑n
i=1 ξi

subject to yi(w
T zi − b) ≥ 1− ξi for all i

ξi ≥ 0 for all i.

On solving the optimization problem on D100 for some C ≥ 0, we get that ŵ = (1, 1)T

and b̂ = 1. Define f̂(z) = ŵT z − b̂. Figure 1 shows a subset of datapoints from Dm and
assume that for all the datapoints zi ∈ Dm not shown in Figure 1 we have yif̂(zi) > 1.
In the figure a label of + represents y = 1 and a label of N represents y = −1.
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(a) (2 points) On the graph in figure 1, draw lines to characterize the margin of the
classifier ŵT z = b̂. The lines characterizing the margin are defined by {z ∈ R2 :
f̂(z) = 1} and {z ∈ R2 : f̂(z) = −1}.

(b) (4 points) Let ξx1,x2 denote the slack of the point located at z = (x1, x2). For each
of the following questions below, fill in the blanks with the best choice from =, >
or <:

ξ(2,4) ξ(2,0) ξ(−1,1) ξ(−1,−2)
ξ(−3,1) ξ(−1,2.5) ξ(2,4) ξ(−1,−2)

(c) From the representer theorem and from duality, we saw that ŵ can be expressed
as ŵ =

∑m
i=1 αizi, where any zi with αi 6= 0 is called a support vector. The com-

plementary slackness conditions give us the following possibilities for any training
example:

1. The example definitely IS a support vector.

2. The example definitely IS NOT a support vector.

3. We cannot determine from the complementary slackness conditions whether or
not the example is a support vector.

For each of the following training points, select the ONE best option from the
possibilities above:

i. (1 point) Example at (2, 4) � 1 � 2 � 3

ii. (1 point) Example at (1, 1) � 1 � 2 � 3

iii. (1 point) Example at (2, 0) � 1 � 2 � 3
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5. Let Dn represent a dataset (x1, y1), . . . , (xn, yn) ∈ Rd × R. The first two dimensions
(i.e. features) of every vector xi are related to each other by scaling: xi1 = sxi2,∀i =
1, 2, . . . , n for some s ∈ R. Let X ∈ Rn×d be the design matrix where the ith row of X
contains xTi and rank(X) = d−1 (i.e. there are no other linear dependencies besides the
one given). Consider the following objective function for elastic net defined over Dn:

J(θ) =
1

n

n∑
i=1

(
θTxi − yi

)2
+ λ1‖θ‖1 + λ2‖θ‖22

(a) Suppose that |s| 6= 1. We optimize J(θ) using subgradient descent. We start
the optimization from θ0 and converge to θ̂ ∈ argminθ∈RdJ(θ). We then restart

the optimization from a different point θ′0 and converge to θ̂′ ∈ argminθ∈RdJ(θ).
Consider the following possibilities:

1. Must have θ̂ = θ̂′

2. May have θ̂ 6= θ̂′ but must have J(θ̂) = J(θ̂′)

3. May have θ̂ 6= θ̂′ and J(θ̂) 6= J(θ̂′)

For each of the subparts below, select the ONE best possibility from the three
given above:

i. (1 point) λ1 = 0, λ2 = 0 � 1 � 2 � 3

ii. (1 point) λ1 > 0, λ2 = 0 � 1 � 2 � 3

iii. (1 point) λ1 = 0, λ2 > 0 � 1 � 2 � 3
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(b) (3 points) Fix λ1 = 0 and λ2 > 0. We optimize J(θ) using stochastic gradient
descent, starting from 0, and we attain θ̂ ∈ argminθ∈RdJ(θ). Let f̂(x) = θ̂Tx.
Consider a new point xt ∈ Rd such that xTt xi = 0 ∀i = 1, 2, . . . , n. Show that
f̂(xt) = 0. (This holds for any s, though you should not need to mention s in your
answer.)
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6. Let k(x, x′) = exp(− 1
2σ2 ||x − x′||2X ), σ > 0 be the radial basis function (RBF) kernel.

By Mercer’s theorem, the kernel k corresponds to a feature map ϕ : X → H mapping
inputs into an inner product space (actually a Hilbert space). Let || · ||H be the norm in
H and || · ||X be the norm in X .

(a) (4 points) Show that for any inputs x1, x2, x3 ∈ X , ||x2 − x1||2X ≤ ||x3 − x1||2X =⇒
||ϕ(x2)−ϕ(x1)||2H ≤ ||ϕ(x3)−ϕ(x1)||2H. (Hint: Expand ||ϕ(x)−ϕ(x′)||2 using inner
products, and then derive the conclusion.)
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7. Consider the regression setting in which X = Rd, Y = R, and A = R with a linear
hypothesis space F = {f(x) = wTx|w ∈ Rd} and the loss function

`(ŷ, y) = (ŷ − y)2

where ŷ is the action and y is the outcome. Consider the objective function

J(w) =
1

n

n∑
i=1

`(wTxi, yi) + λ‖w‖,

where ‖w‖ =
√∑d

i=1w
2
i is the `2 norm of w.

(a) (4 points) Provide a kernelized objective function Jk(α) : Rn → R. You may write
your answer in terms of the Gram matrix K ∈ Rn×n, defined as Kij = xTi xj.
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(b) (1 point) True or False: Suppose we use subgradient descent to optimize the
objective function and want to find the global minima of the objective function. If
we find that there exists a zero subgradient at some step in the subdifferential set,
we should stop the subgradient descent immediately.

(c) (1 point) True or False: Let w∗ be any minimizer of J(w). Then w∗ has the
form of w∗ =

∑n
i=1 αixi.
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