
DS-GA 1003 / CSCI-GA 2567: Machine Learning

May 15, 2018: Final Exam (110 Minutes)

Answer the questions in the spaces provided. If you run out of room for an answer, use the blank page at
the end of the test. Please don’t miss the last question, on the back of the last test page.

Name:

NYU NetID:



Question Points Score

Feature importance 3

Decision Trees 8

Ensemble Methods 9

Bayesian Bernoulli Model 8

EM Algorithm and Latent Variable Models 6

Multiclass 4

Conditional Probability Models: Beta Distribution 5

Neural Networks 6

Total: 49



1. Feature importance:

Consider the feature importance chart shown below (for the iris classification problem):

(a) (1 point) Assume the “relative importance” reported on the x-axis is permutation importance,
using classification accuracy as a metric. For which feature did permutation lead to the largest
decrease in test set accuracy?
� petal width � petal length � sepal width � sepal length

(b) (1 point) Now assume “relative importance” is mean decrease impurity for a decision tree classifier.
Consider the feature “sepal length (cm)”. Which of the following is the least likely explanation for
its low relative importance?

� Sepal length does not provide additional information about the target, given the other
features.

� The target variable is independent of sepal length.

� Sepal length (cm) was used as the splitting variable at the root node of the
tree.

(c) (1 point) T True or False: Given this feature importance chart, there could be another predic-
tion function that has similar accuracy to the given prediction function but for which “sepal length
(cm)” has higher relative importance than “sepal width (cm)”.
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2. Decision Trees:
Below we give the design matrix X and response vector y for the training set of a binary classification
problem with real-valued features:

X =


4 1
6 6
9 5
1 2
7 3
5 4

 y =


1
0
1
0
1
0


In this question, we will build a soft classification binary tree using entropy as our impurity measure.
As a reminder:

The entropy of a probability mass function p(x) on a discrete set X = {x1, . . . , xk} is given by

H(p) = −
k∑
i=1

p(xi) log p(xi),

where we use the convention that 0 log 0 = 0.

(a) (2 points) Indicate which of the following would be expected to reduce overfitting in a decision tree.
(Answer in general – not for the data specified in this problem.)

� Pruning the decision tree.

� Increasing maximum tree depth.

� Decreasing the maximum number of leaf nodes.

� Increasing the minimum number of training instances required in a leaf node.

(b) (2 points) For the data given above, what is the entropy at the root node of the tree before any
splitting has occurred?

Solution:
−0.5 log 0.5− 0.5 log 0.5 = log 2

Can either leave log in the answer or assume log2, in which case the answer is 1.
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(c) (2 points) As we consider splitting the root node, our plan is to search over all possible splits s
for the split that minimizes a real-valued function f(s). Give an expression for the function f
that corresponds to splitting using the entropy impurity measure. Please write f(s) in terms of
the functions n0L(s), n1L(s), n0R(s), and n1R(s), where the first two functions give the number of
examples of class 0 and 1 on the left side of split s, and where the second two functions give the
number of examples of class 0 and 1 on the right side of the split. For convenience, you may also
use the functions nL(s) = n0L(s) + n1L(s) and nR(s) = n0R(s) + n1R(s), and you may define other
intermediate functions if you wish.

Solution: Define h(a) = −a log a− (1− a) log (1− a). Then let

f(s) = nL(s)h

(
n0L(s)

nL(s)

)
+ nR(s)h

(
n0R(s)

nR(s)

)
.

Also fine, possibly even more standard, to divide the whole expression by nL(s) + nR(s).

(d) (2 points) For the data given above, we are looking for a partition of the root node based on the
first feature (i.e. the first column of X) using a rule of the form x1 ≥ c. Select ALL of the following
rules that are optimal with respect to the entropy impurity measure. [HINT: This problem may
be solved without calculation, but may require scratch space.] (Note: No partial credit for this
problem.)

� x1 ≥ 5 � x1 ≥ 5.5 � x1 ≥ 6 � x1 ≥ 6.5 � x1 ≥ 7
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3. Ensemble Methods:

(a) Indicate whether each of the statements (about random forests and gradient boosting) is true or
false.

i. (1 point) T True or False: If your random forest is overfitting, using more bootstrap
samples (i.e. more trees) could help.

ii. (1 point) F True or False: If your gradient boosting model is overfitting, taking additional
steps is likely to help.

iii. (1 point) F True or False: In gradient boosting, if you reduce your step size, you should
expect to need fewer rounds of boosting (i.e. fewer steps) to achieve the same training set loss.

iv. (1 point) T True or False: Fitting a random forest model is extremely easy to parallelize.

v. (1 point) F True or False: Fitting a gradient boosting model is extremely easy to paral-
lelize, for any base regression algorithm.

vi. (1 point) T True or False: Suppose we apply gradient boosting with absolute loss to a
regression problem. If we use linear ridge regression as our base regression algorithm, the final
prediction function from gradient boosting always will be an affine function of the input.
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(b) (3 points) Consider the dataset D = {(x1, y1), (x2, y2), (x3, y3)} where X = Y = R and

(x1, y1) = (0, 0.5), (x2, y2) = (3,−1), (x3, y3) = (1, 2).

Our goal is to use gradient boosting and a software package that fits small regression trees to build
our prediction function. We expect our data to have some outliers, so we use the following Huber
regression loss:

` (y, a) =


y − a− 1

2 y − a > 1

−(y − a)− 1
2 y − a < −1

1
2 (y − a)

2
otherwise.

Suppose we start at f0 ≡ 0, and we want to compute f1, the prediction function after one round of
gradient boosting. Give the dataset that will be passed into the black box regression tree algorithm
to compute f1.

Solution: Since

∂` (y, a)

∂a
=


−1 y − a > 1

1 y − a < −1

− (y − a) otherwise.

,

For a = 0, we have

∂` (y, 0)

∂a
=


−1 y > 1

1 y < −1

−y otherwise.

So the data set is

(x1, y1) = (0,−0.5), (x2, y2) = (3, 1), (x3, y3) = (1,−1).

Also fine to fit the regression to the negative gradient, and step in the opposite direction, in
which case the answer is So the data set is

(x1, y1) = (0, 0.5), (x2, y2) = (3,−1), (x3, y3) = (1, 1).
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4. Bayesian Bernoulli Model
Suppose we have a coin with unknown probability of heads θ ∈ (0, 1). We flip the coin n times and get
a sequence D of coin flips with nh heads and nt tails.

Recall the following:

A Beta(α, β) distribution, for shape parameters α, β > 0, is a distribution supported on the
interval (0, 1) with PDF given by

f(x;α, β) ∝ xα−1(1− x)β−1.

The mean of a Beta(α, β) distribution is α
α+β . The mode is α−1

α+β−2 assuming α, β ≥ 1 and

α+ β > 2. If α = β = 1, then every value in (0, 1) is a mode.

(a) (1 point) Which ONE of the following prior distributions on θ corresponds to a strong belief that
the coin is approximately fair (i.e. has an equal probability of heads and tails)?

� Beta(50, 50) � Beta(0.1, 0.1) � Beta(1, 100)

(b) (1 point) Give an expression for the likelihood function LD(θ) for this sequence of flips.

Solution:
LD(θ) = θnh(1− θ)nt

(c) (1 point) If your posterior distribution on θ is Beta(3, 6), what is your MAP estimate of θ?

Solution: Based on information box above, the mode of the beta distribution is α−1
α+β−2 for

α, β > 1. So the MAP estimate is 2
7 .
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(d) Suppose you have a prior density p(θ) = 3θ2 supported on (0, 1). You observe a sequence of flips D
with nh = 5 heads and nt = 9 tails.

i. (2 points) The posterior distribution p(θ | D) is also a beta distribution. Give the posterior
distribution in the form Beta(α, β), where you fill in the correct numbers for α and β.

Solution:

p(θ|D) ∝ p(θ)LD(θ)

= 3θ2θ5(1− θ)9

∝ θ7(1− θ)9

which is Beta(8, 10)

ii. (1 point) What is the MLE (maximum likelihood estimate) for θ?

Solution: nh
nh+nt

= 5
5+9 = 5

14
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(e) (2 points) Let D be a sequence of coin flips. Let θ̂MLE(D) be the MLE of θ, and let θ̂MAP(D) be
the MAP estimate of θ for some prior on θ. Is there a prior p(θ) in the Beta family of distributions

for which θ̂MLE(D) = θ̂MAP(D) for all observed sequences D (assuming at least one coin flip)? If
not, explain why not. If so, give the distribution in the form Beta(α, β), where you fill in the α and
β.

Solution: Easy by writing down the expressions for the MAP and MLE and equating. If we
take α = β = 1, then f(x;α, β) = 1 on (0, 1).
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5. EM Algorithm and Latent Variable Models:

(a) (1 point) F True or False: The EM algorithm is equivalent to gradient ascent on the marginal
log-likelihood of the observed data.

(b) (1 point) T True or False: EM Algorithm may be worth trying when you want to find the
MLE in a latent variable model, but the marginal likelihood is difficult to maximize directly.

(c) (1 point) T True or False: If θi and θi+1 are parameter estimates we get from two consecutive
steps of the EM algorithm applied to an MLE problem, then the likelihood of θi+1 is always greater
than or equal to the likelihood of θi, even when the log-likelihood function is not convex.

(d) (3 points) Suppose we have a latent variable z ∈ {1, 2, 3} and an observed variable x ∈ (0,∞)
generated as follows:

z ∼ Categorical(π1, π2, π3)

x | z ∼ Gamma(2, βz),

where (β1, β2, β3) ∈ (0,∞)3, and Gamma(2, β) is supported on (0,∞) and has density p(x) =
β2xe−βx. Suppose we know that β1 = 1, β2 = 2, β3 = 4. Give an explicit expression for p(z = 1|x =
1) in terms of the unknown parameters π1, π2, π3.

Solution:

p(z = 1|x = 1) ∝ p(z = 1|x = 1)p(z = 1) = π1e
−1

p(z = 2|x = 1) ∝ p(z = 2|x = 1)p(z = 2) = π24e−2

p(z = 3|x = 1) ∝ p(z = 3|x = 1)p(z = 3) = π316e−4

p(z = 1|x = 1) =
π1e
−1

π1e−1 + π24e−2 + π316e−4
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6. Multiclass: We are given the dataset D = ((x1, y1), . . . , (xn, yn)) where xi ∈ R2 and yi ∈ {1, 2, 3}.
Using a one-vs-all methodology, we have fit the score functions fi(x) = wTi x for i = 1, 2, 3, where

w1 = (5,−3)T , w2 = (−0.2, 0.6)T , w3 = (−0.6,−0.2)T .

(a) (1 point) To fit each wi, we used a standard linear SVM with regularization parameter c = 100.
Suppose we have the following multiclass training data:(

(−2,−3), 3
)
,
(
(2,−1), 1

)
,
(
(1, 2), 2

)
What dataset was given to the SVM to find w3? (Assume that the SVM software expects labels to
be in {−1, 1}.)

Solution:
{
(
(−2,−3), 1

)
,
(
(2,−1),−1

)
,
(
(1, 2),−1

)
}

(b) (1 point) For each of the following new datapoints x, state which class will be predicted.

i. 1 x = (1, 1)

ii. 3 x = (−2, 0)
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(c) (2 points) We want ψ : R2 × {1, 2, 3} → RD, for some D, and w̃ ∈ RD so that

x 7→ arg maxy w̃
Tψ(x, y)

gives the same classification function as the one-vs-all method described above. Give explicit values
for w̃, ψ(x, 1), ψ(x, 2), and ψ(x, 3) for which this is the case. If needed, you may refer to the
components of x by x = (x1, x2).

Solution:
w̃ = (5,−3,−0.2,−0.6,−0.6,−0.2)

ψ(x, 1) = (x1, x2, 0, 0, 0, 0)
ψ(x, 2) = (0, 0, x1, x2, 0, 0)
ψ(x, 3) = (0, 0, 0, 0, x1, x2)
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7. Conditional Probability Models: Beta Distribution

(a) (1 point) We want to model the conditional distribution of y ∈ Y = (0, 1) given x ∈ X = Rd as a
beta distribution (see Problem 4) with parameters (α, β) ∈ (0,∞) × (0,∞). Our approach will be
to determine two “scores” sα, sβ ∈ R based on the input x, and then predict the beta distribution
parameters as follows:

(α, β) = (ψ (sα) , ψ (sβ)) .

Give a differentiable transfer function ψ : R→ R that is appropriate for the model described above.
(An incorrect answer in the correct form would be ψ(s) = 1/s.)

Solution:
ψ(s) = exp(s)

(b) (2 points) We will use two parametrized score functions to produce our scores: sα = f(x; θ) and
sβ = g(x; θ), for some parameter vector θ = (θ1, . . . , θm) ∈ Rm. Give an expression for L(θ;x, y),
the log-likelihood of θ for a single observation (x, y) ∈ Rd × (0, 1). You may write Beta(y;α, β)
for the Beta(α, β) density evaluated at y.

Solution:
L(θ;x, y) = log [Beta(y;ψ(f(x; θ)), ψ(g(x; θ))] .
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(c) (2 points) Suppose f(x; θ) and g(x; θ) are differentiable with respect to θ. For any example (x, y),
the log-likelihood function is J = L(θ;x, y). Below is a computation graph for computing J . Give
an expression for the scalar value ∂J

∂θi
in terms of the “local” partial derivatives at each node. That

is, you may assume you know the partial derivative of the output of any node with respect to each
of its scalar inputs. For example, you may write your expression in terms of ∂J

∂α ,
∂J
∂β ,

∂α
∂sα

, ∂sα
∂θ

(1)
i

, etc.

Note that, as discussed in lecture, θ(1) and θ(2) represent identical copies of θ, and similarly for x(1)

and x(2).

θ ∈ Rm sα = f(x(1), θ(1)) α = ψ(sα) y ∈ (0, 1)

x ∈ Rd sβ = g(x(2), θ(2)) β = ψ(sβ) J = L(α, β; y)

θ(1)

x(2)

θ(2)

x(1)

sα

sβ

α

β

y

J

Solution:
∂J

∂θi
=
∂J

∂α

∂α

∂sα

∂sα

∂θ
(1)
i

+
∂J

∂β

∂β

∂sβ

∂sβ

∂θ
(2)
i
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8. Neural Networks:

(a) (1 point) SKIP True or False: Backpropagation is an algorithm for computing the gradient of a
scalar-valued function represented by a computation graph. [Could also be used for computing the
derivative of a vector-valued function, though we use it for gradient descent optimization, which
only makes sense for scalar-valued functions.]

(b) (1 point) F True or False: Consider a hypothesis space H of prediction functions f : Rd → R
given by a multilayer perceptron (MLP) with 3 hidden layers, each consisting of m nodes, for which
the activation function is σ(x) = cx, for some fixed c ∈ R. Then this hypothesis space is strictly
larger than the set of all affine functions mapping Rd to R.

(c) (1 point) T True or False: Let g : [0, 1]d → R be any continuous function on the compact set
[0, 1]d. Then for any ε > 0, there exists m ∈ {1, 2, 3, . . .}, a = (a1, . . . , am) ∈ Rm,b = (b1, . . . , bm) ∈

Rm, and W =

 - wT1 −
...

...
...

− wTm −

 ∈ Rm×d for which the function f : [0, 1]d → R given by

f(x) =

m∑
i=1

ai max(0, wTi x+ bi)

satisfies |f(x)− g(x)| < ε for all x ∈ [0, 1]
d
.

(d) (1 point) SKIP True or False: Suppose f(x) was found by running gradient descent to minimize
an objective function over a hypothesis space of multilayer perceptrons. Then f will always be
a continuous function, while a prediction function from a gradient boosted regression tree will
generally not be continuous. [I should have added “with continuous activation functions”. There
are discontinuous activation functions for which the MLP is still differentiable with respect to the
parameters, such as a step function where the size of the step is the parameter.]

(e) (2 points) Suppose we have fit a kernelized SVM to some training data (x1, y1) , . . . , (xn, yn) ∈
R× {−1, 1}, and we end up with a score function of the form

f(x) =

n∑
i=1

αik(x, xi),

where k(x, x′) = ϕ(x − x′), for some function ϕ : R → R. Write f : R → R as a multilayer
perceptron by specifying how to set m and ai, wi, bi for i = 1, . . . ,m, and the activation function
σ : R→ R in the following expression:

f(x) =

m∑
i=1

aiσ(wix+ bi)

Solution: Simply take m = n. Then ai = αi , wi = 1, and bi = −xi. Finally take σ = ϕ.
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