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Homework 4: Probabilistic models

Due: Tuesday, March 30th, 2021 at 11:59PM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better.

1 Logistic Regression

Consider a binary classification setting with input space X = Rd, outcome space Y± = {−1, 1},
and a dataset D =

(
(x(1), y(1)), · · · , (x(n), y(n))

)
.

Equivalence of ERM and probabilistic approaches
In the lecture we derived logistic regression using the Bernoulli response distribution. In this
problem you will show that it is equivalent to ERM with logistic loss.

ERM with logistic loss.
Consider a linear scoring function in the space Fscore =

{
x 7→ xTw | w ∈ Rd

}
. A simple way to

make predictions (similar to what we’ve seen with the perceptron algorithm) is to predict ŷ = 1
if xTw > 0, or ŷ = sign(xTw). Accordingly, we consider margin-based loss functions that relate
the loss with the margin, yxTw. A positive margin means that xTw has the same sign as y,
i.e. a correct prediction. Specifically, let’s consider the logistic loss function `logistic(y, w) =
log
(
1 + exp(−ywTx)

)
. This is a margin-based loss function that you have now encountered

several times. Given the logistic loss, we can now minimize the empirical risk on our dataset D
to obtain an estimate of the parameters, ŵ.

MLE with a Bernoulli response distribution and the logistic link function.
As discussed in the lecture, given that p(y = 1 | x;w) = 1/(1+exp(−xTw)), we can estimate w by
maximizing the likelihood, or equivalently, minimizing the negative log-likelihood (NLLD(w) in
short) of the data.

1. Show that the two approaches are equivalent, i.e. they will produce the same solution for
w.

Linearly Separable Data
In this problem, we will investigate the behavior of MLE for logistic regression when the data

is linearly separable.

2. Show that the decision boundary of logistic regression is given by
{
x : xTw = 0

}
. Note

that the set will not change if we multiply the weights by some constant c.

3. Suppose the data is linearly separable and by gradient descent/ascent we have reached
a decision boundary defined by ŵ where all examples are classified correctly. Show that
we can always increase the likelihood of the data by multiplying a scalar c on ŵ, which
means that MLE is not well-defined in this case. (Hint: You can show this by taking the
derivative of L(cŵ) with respect to c, where L is the likelihood function.)

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
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Regularized Logistic Regression
As we’ve shown in above, when the data is linearly separable, MLE for logistic regression may
end up with weights with very large magnitudes. Such a function is prone to overfitting. In this
part, we will apply regularization to fix the problem.

The `2 regularized logistic regression objective function can be defined as

Jlogistic(w) = R̂n(w) + λ‖w‖2

=
1

n

n∑
i=1

log
(

1 + exp
(
−y(i)wTx(i)

))
+ λ‖w‖2.

4. Prove that the objective function Jlogistic(w) is convex. You may use any facts mentioned
in the convex optimization notes.

5. Complete the f objective function in the skeleton code, which computes the objective
function for Jlogistic(w). (Hint: you may get numerical overflow when computing the
exponential literally, e.g. try e1000 in Numpy. Make sure to read about the log-sum-exp
trick and use the numpy function logaddexp to get accurate calculations and to prevent
overflow.

6. Complete the fit logistic regression function in the skeleton code using the minimize
function from scipy.optimize. Use this function to train a model on the provided data.
Make sure to take the appropriate preprocessing steps, such as standardizing the data and
adding a column for the bias term.

7. Find the `2 regularization parameter that minimizes the log-likelihood on the validation
set. Plot the log-likelihood for different values of the regularization parameter.

8. [Optional] It seems reasonable to interpret the prediction f(x) = φ(wTx) = 1/(1 + e−w
T x)

as the probability that y = 1, for a randomly drawn pair (x, y). Since we only have a finite
sample (and we are regularizing, which will bias things a bit) there is a question of how
well “calibrated” our predicted probabilities are. Roughly speaking, we say f(x) is well
calibrated if we look at all examples (x, y) for which f(x) ≈ 0.7 and we find that close to
70% of those examples have y = 1, as predicted... and then we repeat that for all predicted
probabilities in (0, 1). To see how well-calibrated our predicted probabilities are, break the
predictions on the validation set into groups based on the predicted probability (you can
play with the size of the groups to get a result you think is informative). For each group,
examine the percentage of positive labels. You can make a table or graph. Summarize the
results. You may get some ideas and references from scikit-learn’s discussion.

Bayesian Logistic Regression with Gaussian Priors

Let’s continue with logistic regression in the Bayesian setting, where we introduce a prior p(w)
on w ∈ Rd.

9. For the same dataset D described at the beginning of the Section, give an expression for
the posterior density p(w | D) in terms of the negative log-likelihood function NLLD(w)
and the prior density p(w) (up to a proportionality constant is fine).

https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf
https://blog.feedly.com/tricks-of-the-trade-logsumexp/
https://blog.feedly.com/tricks-of-the-trade-logsumexp/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html
https://en.wikipedia.org/wiki/Calibration_(statistics)
http://scikit-learn.org/stable/modules/calibration.html
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10. Suppose we take a prior on w of the form w ∼ N (0,Σ), that is in the Gaussian family. Is
this a conjugate prior to the likelihood given by logistic regression?

11. Show that there exist a covariance matrix Σ such that MAP (maximum a posteriori) esti-
mate for w after observing data D is the same as the minimizer of the regularized logistic
regression function defined in Regularized Logistic Regression paragraph above, and give
its value. [Hint: Consider minimizing the negative log posterior of w. Also, remember you
can drop any terms from the objective function that don’t depend on w. You may freely
use results of previous problems.]

12. In the Bayesian approach, the prior should reflect your beliefs about the parameters before
seeing the data and, in particular, should be independent on the eventual size of your
dataset. Imagine choosing a prior distribution w ∼ N (0, I). For a dataset D of size n,
how should you choose λ in our regularized logistic regression objective function so that
the ERM is equal to the mode of the posterior distribution of w (i.e. is equal to the MAP
estimator).

2 Coin Flipping with Partial Observability

Consider flipping a biased coin where p(z = H | θ1) = θ1. However, we cannot directly observe
the result z. Instead, someone reports the result to us, which we denotey by x. Further,
there is a chance that the result is reported incorrectly if it’s a head. Specifically, we have
p(x = H | z = H, θ2) = θ2 and p(x = T | z = T ) = 1.

13. Show that p(x = H | θ1, θ2) = θ1θ2.

14. Given a set of reported results Dr of size Nr, where the number of heads is nh and the
number of tails is nt, what is the likelihood of Dr as a function of θ1 and θ2.

15. Can we estimate θ1 and θ2 using MLE? Explain your judgment.

16. We additionally obtained a set of clean results Dc of size Nc, where x is directly observed
without the reporter in the middle. Given that there are ch heads and ct tails, estimate
θ1 and θ2 by MLE taking the two data sets into account. Note that the likelihood is
L(θ1, θ2) = p(Dr,Dc | θ1, θ2).

17. Since the clean results are expensive, we only have a small number of those and we are
worried that we may overfit the data. To mitigate overfitting we can use a prior distribution
on θ1 if available. Let’s imagine that an oracle gave use the prior p(θ1) = Beta(h, t). Derive
the MAP estimates for θ1 and θ2.
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